Published online by Cambridge University Press: 09 July 2021
This paper presents a trajectory planning method based on multi-objective optimization, including time optimal and jerk optimal for the manipulators in the presence of obstacles. The proposed method generates a trajectory configuration in the joint space with kinematic and obstacle constraints using quintic B-spline. Gilbert–Johnson–Keerthi detecting algorithm is utilized to detect whether there is a collision and obtain the minimum distance between the manipulator and obstacles. The degree of constraint violations is introduced to redefine the Pareto domination, and the constrained multi-objective particle swarm algorithm (CMOPSO) is adopted to solve the time-jerk optimization problem. Finally, the Z-type fuzzy membership function is proposed to select the best optimal solution in the Pareto front obtained by CMOPSO. Test results show the effectiveness of the proposed method.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.