No CrossRef data available.
Published online by Cambridge University Press: 09 July 2021
In this paper, a novel statistical application of large deviation principle (LDP) to the robot trajectory tracking problem is presented. The exit probability of the trajectory from stability zone is evaluated, in the presence of small-amplitude Gaussian and Poisson noise. Afterward, the limit of the partition function for the average tracking error energy is derived by solving a fourth-order system of Euler–Lagrange equations. Stability and computational complexity of the proposed approach is investigated to show the superiority over the Lyapunov method. Finally, the proposed algorithm is validated by Monte Carlo simulations and on the commercially available Omni bundleTM robot.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.