Published online by Cambridge University Press: 08 June 2022
Soft crawling robots have been significantly studied in recent decades. However, moving in amphibious environment, high payload capability, and passing through complex ground have always been challenges for soft crawling robots. For these problems, this article presents an amphibious soft-rigid wheeled crawling robot (SRWCR) consists of a soft-rigid body actuated by two soft pneumatic actuators (SPAs), four wheels, and four annular soft bladders (ASBs) as brakes. By programming the actuation sequences of the two SPAs and four ASBs, SRWCR can achieve two basic modes of locomotion: linear motion and turning. Based on the energy conservation law, we have developed analytical models to interpret the static actuation performance of SPA, including linear and bending deformations. Furthermore, with the help of fast response and waterproof of SPA and ASB, SRWCR can achieve a linear speed of 14.97 mm/s, a turning speed of 5.63°/s, and an underwater locomotion speed of 13 mm/s, which demonstrates the excellent locomotion performance of SRWCR in amphibious environment. In addition, SRWCR can also achieve multiple impressive functions, including carrying a payload of 2 kg at the moving speed of 11.18 mm/s, passing through various complex ground such as the grass ground and sand ground, and so on, obstacle navigation in confined space. Compared with the existing soft crawling robots, with the help of the soft-rigid body and wheeled structure, SRWCR has the best payload and passing capability, which indicates the potential advantage of SRWCR in the design of functional robots.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.