Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-18T11:54:20.843Z Has data issue: false hasContentIssue false

An analysis and review of robot magic shows

Published online by Cambridge University Press:  15 June 2023

Jeehyun Yang
Affiliation:
National Taiwan Normal University, 106, Heping E. Road, Sec. 1, Taipei City, 10610, Taiwan
Jaesik Jeong
Affiliation:
National Taiwan Normal University, 106, Heping E. Road, Sec. 1, Taipei City, 10610, Taiwan
Jacky Baltes*
Affiliation:
National Taiwan Normal University, 106, Heping E. Road, Sec. 1, Taipei City, 10610, Taiwan
*
Corresponding author: Jacky Baltes; Email: jacky.baltes@gmail.com

Abstract

The field of humanoid robotics is constantly evolving, with new advances creating exciting opportunities for research and development. Especially in the entertainment area, robotics applications show significant growth potential. To guide and track the progress of robotics research, good benchmark problems are crucial, but especially investigating human–robot interaction capabilities is difficult. This paper examines robot magic shows as a benchmark and research direction for entertainer robots and discusses flexible and versatile system architectures for robot magicians in the humanoid robot application challenge competition since 2017. The goal is a detailed analysis of magic tricks and magician robots presented in front of audiences. This paper reviews the hardware components and examines the robot platforms of participating teams in the robot magic show, the types of magic performances, the magic tricks and tools, the algorithms for the magic tricks, and the framework for humanoid robots. By providing a comprehensive analysis of these elements, we can gain insight into the capabilities of advanced humanoid robots for high-performance magic tricks. In conclusion, this paper highlights the exciting potential of humanoid robotics and entertainment fusion. In addition, we analyze the use of humanoid robots in magic shows, presenting the industrial potential of entertainer robots.

Type
Review
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, M. D. 2006. The meanings of magic. Magic, Ritual, and Witchcraft 1(1), 123.CrossRefGoogle Scholar
Bloss, R. 2010. Robot show 2009: Music to the ears, literally. Industrial Robot: An International Journal 37(1), 812.CrossRefGoogle Scholar
Bogue, R. 2022. The role of robots in entertainment. Industrial Robot: The International Journal of Robotics Research and Application 49(4), 667671.CrossRefGoogle Scholar
Davies, A. & Crosby, A. 2016. Compressorhead: The robot band and its transmedia story world. In Cultural Robotics: First International Workshop, CR 2015, Held as Part of IEEE RO-MAN 2015. Springer, Kobe, Japan, 175189, August 31, 2015. Revised Selected Papers 1CrossRefGoogle Scholar
Fitzgerald, C. 2013. Developing baxter. (2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA). IEEE, 16.Google Scholar
Ha, I., Ha, I., Tamura, Y., Asama, H., Han, J. & Hong, D. W. 2011. Development of open humanoid platform DARwIn-OP. SICE Annual Conference 2011. IEEE, 21782181.Google Scholar
Jeong, J., Yang, J. & Baltes, J. 2020. Robot magic show: Human-robot interaction. The Knowledge Engineering Review 35, e15.CrossRefGoogle Scholar
Jeong, J., Yang, J. & Baltes, J. 2022. Robot magic show as testbed for humanoid robot interaction. Entertainment Computing 40, 100456.CrossRefGoogle Scholar
Jochum, E., Vlachos, E., Christoffersen, A., Nielsen, S. G., Hameed, I. A. & Tan, Z.-H. 2016. Using theatre to study interaction with care robots. International Journal of Social Robotics 8(4), 457470.CrossRefGoogle Scholar
Kaneko, K., Kanehiro, F., Morisawa, M., Tsuji, T., Miura, K., Nakaoka, S., Kajita, S. & Yokoi, K. 2011. Hardware improvement of cybernetic human HRP-4C for entertainment use. (2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 43924399.Google Scholar
Lytridis, C., Bazinas, C., Kaburlasos, V. G., Vassileva-Aleksandrova, V., Youssfi, M., Mestari, M., Ferelis, V. & Jaki, A. 2019. Social robots as cyber-physical actors in entertainment and education. (2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). IEEE, 16.Google Scholar
McKenzie, V., Thompson, N. J., Moore, D. & Ben-Ary, G. 2021. CellF: Surrogate musicianship as a manifestation of in-vitro intelligence. In Handbook of Artificial Intelligence for Music: Foundations, Advanced Approaches, and Developments for Creativity, 915932.CrossRefGoogle Scholar
Megabyte, Meet Robby 2021. Bosnia’s first robot rock band musician. Available at: https://www.reuters.com/article/us-bosnia-robot-idUSKBN2A41U5.Google Scholar
Moon, H., l. Moon, H., Sun, Y., Baltes, J. & Kim, S. J. 2017. The IROS. 2016 competitions [competitions]. IEEE Robotics and Automation Magazine 24(1), 2029.CrossRefGoogle Scholar
Nakaoka, S., Miura, K., Morisawa, M., Kanehiro, F., Kaneko, K., Kajita, S. & Yokoi, K. 2011. Toward the use of humanoid robots as assemblies of content technologies-realization of a biped humanoid robot allowing content creators to produce various expressions. Synthesiology English Edition 4(2), 8798.CrossRefGoogle Scholar
Nishiguchi, S., Ogawa, K., Yoshikawa, Y., Chikaraishi, T., Hirata, O. & Ishiguro, H. 2017. Theatrical approach: Designing human-like behaviour in humanoid robots. Robotics and Autonomous Systems 89, 158166.CrossRefGoogle Scholar
Pluta, I. 2016. Theater and robotics: Hiroshi Ishiguro’s androids as staged by Oriza Hirata. Art Research Journal 3(1), 6579.Google Scholar
Ramos, O. E., Mansard, N., Stasse, O., Benazeth, C., Hak, S. & Saab, L. 2015. Dancing humanoid robots: Systematic use of osid to compute dynamically consistent movements following a motion capture pattern. IEEE Robotics & Automation Magazine 22(4), 1626.CrossRefGoogle Scholar
Robertson, J. 2021. Robot theater (Rohotto engeki) in Japan: Staging science fiction futures. Mechademia: Second Arc 14(1), 93112.CrossRefGoogle Scholar
Saeedvand, S., Aghdasi, H. S. & Baltes, J. 2020. Mechatronic design of ARC humanoid robot open platform: First fully 3D printed kid-sized robot. International Journal of Humanoid Robotics 17(3), 2050010.CrossRefGoogle Scholar
Schnekenburger, F., Scharffenberg, M., Wulker, M., Hochberg, U. & Dorer, K. 2017. Detection and localization of features on a soccer field with feedforward fully convolutional neural networks (FCNN) for the adult-size humanoid robot sweaty. (Proceedings of the 12th Workshop on Humanoid Soccer Robots, IEEE-RAS International Conference on Humanoid Robots, Birmingham.Google Scholar
Sigman, A. 2020. Robot opera: Bridging the anthropocentric and the mechanized eccentric. Computer Music Journal 43(1), 2137.CrossRefGoogle Scholar
Stamboliev, E. 2017. On Spillikin-A Love Story: Issues Around the Humanoid Robot as a Social Actor on Stage. AVANT. Pismo Awangardy Filozoficzno-Naukowej, in, pp. 265271.Google Scholar
Williams, H. & McOwan, P. W. 2014. Magic in the machine: A computational magician’s assistant. Frontiers in Psychology 5, 1283.CrossRefGoogle Scholar