Published online by Cambridge University Press: 16 February 2022
To accurately predict propagation dynamics for single or multiple change propagations across different product development stages in a sequential or concurrent way is critical for decision-making of implementing change requests. In this paper, a change propagation dynamic model is built based on the compartmentalization of engineering entities into susceptible engineering entities and affected engineering entities (SA), the ordinary differential equations for describing the rate of affected entities with respect to the total ones and the duration for resolving all the changes for every moment are presented by combining the calculations of change impacts with different split and joint junctions. Considering the difficulty of finding analytical solutions to the differential equations, algorithms for sequential and concurrent simulations of change propagations across different development stages, and random and GA (Genetic Algorithm)-based optimal selections of feasible propagation paths are developed to obtain numerical solutions for single and multiple change requests. Simulation results show that change ripples and blossoms can be observed in both sequential and concurrent change propagations, and these propagation patterns are not sensitive to the initial change effect and the threshold value for propagations, while critical change propagation paths and the number of initiated changes have important effects on both concurrent and sequential change propagation process. It is also demonstrated that concurrent propagation strategy is advantageous for processing single or few of initiated changes since it can shorten product redevelopment time, sequential propagation strategy has an advantage of robustness for handling multiple initiated change requests.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.