Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T13:37:16.225Z Has data issue: false hasContentIssue false

Extremal Graph Problems for Graphs with a Color-Critical Vertex

Published online by Cambridge University Press:  12 September 2008

Christoph Hundack
Affiliation:
Institut für Diskrete Mathematik, Universität Bonn, Nassestr. 2, 53113 Bonn, Germany
Hans Jürgen Prömel
Affiliation:
Institut für Diskrete Mathematik, Universität Bonn, Nassestr. 2, 53113 Bonn, Germany
Angelika Steger
Affiliation:
Institut für Diskrete Mathematik, Universität Bonn, Nassestr. 2, 53113 Bonn, Germany

Abstract

In this paper we consider the following problem, given a graph H, what is the structure of a typical, i.e. random, H-free graph? We completely solve this problem for all graphs H containing a critical vertex. While this result subsumes a sequence of known results, its short proof is self contained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bollobás, B. (1978) Extremal Graph Theory, Academic Press, New York, London.Google Scholar
[2]Bollobás, B. and Erdős, P. (1973) On the structure of edge graphs. Bull. London Math. Soc. 5 317321.Google Scholar
[3]Erdős, P., Kleitman, D.J. and Rothschild, B.L. (1976) Asymptotic enumeration of Kn-free graphs. In: International Colloquium on Combinatorial Theory. Atti dei Convegni Lincei 17 (2) Rome1927.Google Scholar
[4]Erdős, P. and Simonovits, M. (1971) An extremal graph problem. Acta Mathematica Academiae Scientiarum Hungaricae 22 275282.Google Scholar
[5]Kolaitis, Ph. G., Prömel, H.J. and Rothschild, B.L. (1987) K l+1-free graphs: asymptotic structure and a 0 – 1 law. Trans. Amer. Math. Soc. 303 637671.Google Scholar
[6]Mantel, W. (1907) Problem 28, soln. by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W.A. Wythoff. Wiskundige Opgaven 10 6061.Google Scholar
[7]Prömel, H.J. and Steger, A. (1992) Coloring clique-free graphs in linear expected time. Random Structures and Algorithms 3 375402.Google Scholar
[8]Prömel, H.J. and Steger, A. (1992) The asymptotic number of graphs not containing a fixed color-critical subgraph. Combinatorica 12 463473.Google Scholar
[9]Prömel, H.J. and Steger, A. (1993) Random l-colorable graphs, Forschungsinstitut für Diskrete Mathematik, Universität Bonn.Google Scholar
[10]Simonovits, M. (1966) A method for solving extremal problems in graph theory, stability problems. In: Theory of Graphs, Proc. Coll. held at Tihany, Hungary.Google Scholar
[11]Simonovits, M. (1974) Extremal graph problems with symmetrical extremal graphs. Additional chromatic conditions. Discrete Math. 1 349376.Google Scholar
[12]Simonovits, M. (1983) Extremal graph theory. In: Beineke, L.W. and Wilson, R.J. (eds) Selected Topics in Graph Theory 2, Academic Press, London, 161200.Google Scholar
[13]Steger, A. (1990) Die Kleitman-Rothschild Methode, Dissertation Universität Bonn.Google Scholar
[14]Turán, P. (1941) Egy gräfelméleti szélsőértékfeladatról. Mat. Fiz. Lapok 48 436452.Google Scholar