Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T03:19:35.770Z Has data issue: false hasContentIssue false

On the Laplacian Eigenvalues of Gn,p

Published online by Cambridge University Press:  01 November 2007

AMIN COJA-OGHLAN*
Affiliation:
Carnegie Mellon University, Department of Mathematical Sciences, Pittsburgh, PA 15213, USA (e-mail: coja@informatik.hu-berlin.de)

Abstract

We investigate the Laplacian eigenvalues of sparse random graphs Gnp. We show that in the case that the expected degree d = (n-1)p is bounded, the spectral gap of the normalized Laplacian is o(1). Nonetheless, w.h.p. G = Gnp has a large subgraph core(G) such that the spectral gap of is as large as 1-O (d−1/2). We derive similar results regarding the spectrum of the combinatorial Laplacian L(Gnp). The present paper complements the work of Chung, Lu and Vu [8] on the Laplacian spectra of random graphs with given expected degree sequences. Applied to Gnp, their results imply that in the ‘dense’ case d ≥ ln2n the spectral gap of is 1-O (d−1/2) w.h.p.

Type
Paper
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alon, N. (1998) Spectral techniques in graph algorithms. In Proc. 3rd LATIN, pp. 206215.Google Scholar
[2]Alon, N. and Kahale, N. (1997) A spectral technique for coloring random 3-colorable graphs. SIAM J. Comput. 26 17331748.CrossRefGoogle Scholar
[3]Alon, N., Krivelevich, M. and Sudakov, B. (1998) Finding a large hidden clique in a random graph. Random Struct. Alg. 13 457466.3.0.CO;2-W>CrossRefGoogle Scholar
[4]Bauer, M. and Golinelli, O. (2001) Random incidence matrices: Moments of the spectral density. J. Statist. Phys. 103 301337.CrossRefGoogle Scholar
[5]Bollobás, B. (2001) Random Graphs, 2nd edn, Springer.CrossRefGoogle Scholar
[6]Boppana, R. (1987) Eigenvalues and graph bisection: An average-case analysis. In Proc. 28th FOCS, pp. 280285.Google Scholar
[7]Chung, F. R. K. (1997) Spectral Graph Theory, AMS.Google Scholar
[8]Chung, F. R. K., Lu, L. and Vu, V. (2003) The spectra of random graphs with given expected degrees. Internet Mathematics 1 257275.CrossRefGoogle Scholar
[9]Coja-Oghlan, A. (2005) Spectral techniques, semidefinite programs, and random graphs. Habilitation thesis, Humboldt University, Berlin.Google Scholar
[10]Coja-Oghlan, A. (2006) A spectral heuristic for bisecting random graphs. Random Struct. Alg. 29 351398.CrossRefGoogle Scholar
[11]Dasgupta, A., Hopcroft, J. E. and McSherry, F. (2004) Spectral partitioning of random graphs. In Proc. 45th FOCS, pp. 529537.Google Scholar
[12]Donath, W. E. and Hoffman, A. J. (1973) Lower bounds for the partitioning of a graph. IBM J. Res. Develop. 17 420425.CrossRefGoogle Scholar
[13]Feige, U. and Ofek, E. (2005) Spectral techniques applied to sparse random graphs. Random Struct. Alg. 27 251275.CrossRefGoogle Scholar
[14]Friedman, J. (2003) A proof of Alon's second eigenvalue conjecture. In Proc. 35th STOC, pp. 720724.Google Scholar
[15]Friedman, J., Kahn, J. and Szemerédi, E. (1989) On the second eigenvalue in random regular graphs. In Proc. 21st STOC, pp. 587598.Google Scholar
[16]Füredi, Z. and Komloś, J. (1981) The eigenvalues of random symmetric matrices. Combinatorica 1 233241.CrossRefGoogle Scholar
[17]Golub, G. H. and van Loan, C. F. (1996) Matrix Computations, 3rd edn, Johns Hopkins University Press.Google Scholar
[18]Guattery, S. and Miller, G. L. (1998) On the quality of spectral separators. SIAM J. Matrix Anal. Appl. 19 701719.CrossRefGoogle Scholar
[19]Janson, S. (2005) The first eigenvalue of random graphs. Combin. Probab. Comput. 14 815828.CrossRefGoogle Scholar
[20]Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley.CrossRefGoogle Scholar
[21]Khorunzhiy, O., Kirsch, W. and Müller, P. (2005) Lifshits tails for spectra of Erdos–Renyi random graphs. Annals of applied probability 16 (2006) 295309. Preprint: arXiv:math-ph/0502054 v1.Google Scholar
[22]Krivelevich, M. and Sudakov, B. (2003) The largest eigenvalue of sparse random graphs. Combin. Probab. Comput. 12 6172.CrossRefGoogle Scholar
[23]Pothen, A., Simon, H. D. and Liou, K.-P. (1990) Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11 430452.CrossRefGoogle Scholar
[24]Schloegel, K., Karypis, G. and Kumar, V. (2000) Graph partitioning for high performance scientific simulations. In CRPC Parallel Computation Handbook (Dongarra, J., Foster, I., Fox, G., Kennedy, K. and White, A., eds), Morgan-Kaufmann.Google Scholar
[25]Vu, V. (2005) Spectral norm of random matrices. In Proc. 37th STOC, pp. 423430.Google Scholar
[26]Wigner, E. P. (1958) On the distribution of the roots of certain symmetric matrices. Ann. of Math. 67 325327.CrossRefGoogle Scholar