Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T09:58:53.595Z Has data issue: false hasContentIssue false

COMPLETENESS OF SECOND-ORDER PROPOSITIONAL S4 AND H IN TOPOLOGICAL SEMANTICS

Published online by Cambridge University Press:  27 September 2018

PHILIP KREMER*
Affiliation:
Department of Philosophy, University of Toronto
*
*DEPARTMENT OF PHILOSOPHY UNIVERSITY OF TORONTO TORONTO, ON M5S 3H7, CANADA E-mail: kremer@utsc.utoronto.ca

Abstract

We add propositional quantifiers to the propositional modal logic S4 and to the propositional intuitionistic logic H, introducing axiom schemes that are the natural analogs to axiom schemes typically used for first-order quantifiers in classical and intuitionistic logic. We show that the resulting logics are sound and complete for a topological semantics extending, in a natural way, the topological semantics for S4 and for H.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Fine, K. (1970). Propositional quantifiers in modal logic. Theoria, 36, 336346.CrossRefGoogle Scholar
Gabbay, D. (1974). On 2nd order intuitionistic propositional calculus with full comprehension. Archiv f ur mathematische Logik, 16, 177186.CrossRefGoogle Scholar
Geuvers, H. (1994). Consevativity between logics and typed lambda-calculi. In Barendregt, H. and Nipkow, T., editors. Types for Proofs and Programs, International Workshop TYPES ’93. Lecture Notes in Computer Science, Vol. 806. New York: Springer, pp. 131154.Google Scholar
Kaminski, M. & Tiomkin, M. (1996). The expressive power of second-order propositional modal logic. Notre Dame Journal of Formal Logic, 37, 3543.Google Scholar
Kaplan, D. (1970). S5 with quantifiable propositional variables. Journal of Symbolic Logic, 35, 355.Google Scholar
Kremer, P. (1997a). On the complexity of propositional quantification in intuitionistic logic. Journal of Symbolic Logic, 62, 529544.CrossRefGoogle Scholar
Kremer, P. (1997b). Propositional quantification in the topological semantics for S4. Notre Dame Journal of Formal Logic, 38, 295313.CrossRefGoogle Scholar
Kremer, P. (2013). Strong completeness of S4 for any dense-in-itself metric space. Review of Symbolic Logic, 6, 545570.CrossRefGoogle Scholar
Kremer, P. (2014). Quantified modal logic on the rational line. Review of Symbolic Logic, 7, 439454.CrossRefGoogle Scholar
Makinson, D. (1966). On some completeness theorems in modal logic. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 12, 379384.CrossRefGoogle Scholar
Rasiowa, H. & Sikorski, R. (1963). The Mathematics of Metamathematics. Warsaw: Państowowe Wydawnictwo Naukowe,Google Scholar
Sobolev, S. K. (1977). The intuitionistic propositional calculus with quantifiers (in Russian). Matematicheskiye Zametki, 22, 6976. English translation in Mathematical Notes of the Academy of Sciences of the USSR 22 (1977), 528–532.Google Scholar
Sørensen, M. H. & Urzyczyn, P. (2006). Lectures on the Curry-Howard Isomorphism. New York: Elsevier.Google Scholar
Zdanowski, K. (2009). On second order intuitionistic propositional logic without a universal quantifier. Journal of Symbolic Logic, 74, 157167.CrossRefGoogle Scholar