Skip to main content
Log in

The Fuhrmann-Realization for Multi-Operator Systems in the Behavioral Context

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

We use thepolynomial approach of Fuhrmann to construct explicit first-orderinput/latent variable/output realizationsfor systems with several operators acting on a function space.The class of systems being covered includes certain types ofdelay-differential, partial differential, and discrete-time mD-systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Brewer, J. W. Bunce, and F. S. Van Vleck, “Linear Systems over Commutative Rings,” Lecture Notes in Pure and Applied Mathematics, vol. 104, Marcel Dekker, 1986.

  2. L. Ehrenpreis, “Solutions of Some Problems of Division. Part I. Division by a Polynomial of Derivation,” American Journal of Mathematics, vol. 76, 1954, pp. 883-903.

    Google Scholar 

  3. L. Ehrenpreis, “Solutions of Some Problems of Division. Part II. Division by a Punctual of Distribution,” American Journal of Mathematics, vol. 77, 1955, pp. 286-292.

    Google Scholar 

  4. P. A. Fuhrmann, “Algebraic Systems Theory: An Analyst's Point of View,” J. Franklin Inst., vol. 301, 1976, pp. 521-540.

    Google Scholar 

  5. P. A. Fuhrmann, Linear Systems and Operators in Hilbert Space, McGraw-Hill, 1981.

  6. H. Glüsing-Lüerßen, “Continuous State-Space Representations for AR-Systems,” Math. Contr., Sign., Syst., vol. 8, 1995, 82-95.

    Google Scholar 

  7. H. Glüsing-Lüerßen, “A Behavioral Approach to Delay Differential Equations,” SIAM J. Contr. & Opt., vol. 35, 1997, pp. 480-499.

    Google Scholar 

  8. H. Glüsing-Lüerßen, “First-Order Representations of Delay-Differential Systems in a Behavioural Setting,” European Journal of Control, vol. 3, 1997, pp. 137-149.

    Google Scholar 

  9. L. C. G. J. M. Habets, “System Equivalence for AR-Systems over Rings-With an Application to Delay-Differential Systems,” Math. Contr., Sign., Syst., vol. 12, 1998, pp. 219-244.

    Google Scholar 

  10. D. Hinrichsen and D. Prätzel-Wolters, “Solution Modules and System Equivalence,” Int. J. Contr., vol. 32, 1980, pp. 777-802.

    Google Scholar 

  11. W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Cambridge University Press, 1968.

  12. E. W. Kamen, “On an Algebraic Theory of Systems Defined by Convolution Operators,” Math. Systems Theory, vol. 9, 1975, pp. 57-74.

    Google Scholar 

  13. E. W. Kamen, “Linear Systems over Rings: From R. E. Kalman to the Present,” In A. Antoulas (ed.), Mathematical System Theory, The Influence of R. E. Kalman, pp. 311-324, Springer, 1991.

  14. P. P. Khargonekar, “On Matrix Fraction Representations for Linear Systems over Commutative Rings,” SIAM J. Contr. & Opt., vol. 20, 1982, pp. 172-196.

    Google Scholar 

  15. M. Kuijper and J. M. Schumacher, “Realization of Autoregressive Equations in Pencil and Descriptor Form,” SIAM J. Contr. & Opt., vol. 28, no. 5, 1990, pp. 1162-1189.

    Google Scholar 

  16. S. Lang, Algebra, 2nd edition, Addison-Wesley, 1984.

  17. A. S. Morse, “Ring Models for Delay-Differential Systems,” Automatica, vol. 12, 1976, pp. 529-531.

    Google Scholar 

  18. U. Oberst, “Multidimensional Constant Linear Systems,” Acta Appl. Mathematicae, vol. 20, 1990, pp. 1-175.

    Google Scholar 

  19. J. Rosenthal and J. M. Schumacher, “Realization by Inspection,” IEEE Trans. Automat. Contr., vol. AC-42, 1997, pp. 1257-1263.

    Google Scholar 

  20. Y. Rouchaleau and E. D. Sontag, “On the Existence of Minimal Realizations of Linear Dynamical Systems over Noetherian Integral Domains,” J. Comp. Syst. Sci., vol. 18, 1979, pp. 65-75.

    Google Scholar 

  21. E. D. Sontag, “Linear Systems over Commutative Rings: A Survey,” Ricerche di Automatica, vol. 7, 1976, pp. 1-34.

    Google Scholar 

  22. E. D. Sontag, “The Lattice of Minimal Realizations of Response Maps over Rings,” Math. Systems Theory, vol. 11, 1977, pp. 169-175.

    Google Scholar 

  23. P. Weiner, Multidimensional Convolutional Codes, Ph.D. thesis, University of Notre Dame, 1998. Available at http://www.nd.edu/~rosen/preprints.html.

  24. J. C. Willems, “Paradigms and Puzzles in the Theory of Dynamical Systems,” IEEE Trans. Automat. Contr., vol. AC-36, 1991, pp. 259-294.

    Google Scholar 

  25. J. Wood, E. Rogers, and D. H. Owens, “Controllable and Autonomous nD Linear Systems,” Mult. Systems and Signal Processing, vol. 10, 1999, pp. 33-69.

    Google Scholar 

  26. D. C. Youla and P. F. Pickel, “The Quillen-Suslin Theorem and the Structure of n-Dimensional Elementary Polynomial Matrices,” IEEE Trans. Circuits and Systems, vol. CAS-31, 1984, pp. 513-517.

    Google Scholar 

  27. S. H. Zak and E. B. Lee, “The Simplified Derivation of the Completion Theorem to a Unimodular Matrix over R[z 1 ; z 2],” IEEE Trans. Automat. Contr., vol. AC-30, 1985, pp. 161-162.

    Google Scholar 

  28. S. Zampieri, “Some Results and Open Problems on Delay Differential Systems,” The Mathematics of Systems and Control: From Intelligent Control to Behavioral Systems, University of Groningen, The Netherlands, 1999, pp. 231-238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gluesing-Luerssen, H. The Fuhrmann-Realization for Multi-Operator Systems in the Behavioral Context. Multidimensional Systems and Signal Processing 11, 193–211 (2000). https://doi.org/10.1023/A:1008482429720

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008482429720

Navigation