Skip to main content
Log in

Nonrobustness Property of the Individual Ergodic Theorem

  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

Main laws of probability theory, when applied to individual sequences, have a “robustness” property under small violations of randomness. For example, the law of large numbers for the symmetric Bernoulli scheme holds for a sequence where the randomness deficiency of its initial fragment of length n grows as o(n). The law of iterated logarithm holds if the randomness deficiency grows as o(log log n). We prove that Birkhoff's individual ergodic theorem is nonrobust in this sense. If the randomness deficiency grows arbitrarily slowly on initial fragments of an infinite sequence, this theorem can be violated. An analogous nonrobustness property holds for the Shannon–McMillan–Breiman theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kolmogorov, A.N., The Logical Basis for Information Theory and Probability Theory, IEEE Trans. Inf. Theory, 1968, vol. 14,no. 3, pp. 662-664.

    Google Scholar 

  2. Martin-Löf, P., The Definition of Random Sequences, Inf. Control, 1966, vol. 9,no. 6, pp. 602-619.

    Google Scholar 

  3. Birkhoff, G.D., Proof of the Ergodic Theorem, Proc. Nat. Acad. USA, 1931, vol. 17, pp. 656-660.

    Google Scholar 

  4. V'yugin, V.V., Effective Convergence in Probability and an Ergodic Theorem for Individual Random Sequences, Teor. Veroyatn. Primen., 1977, vol. 42,no. 2, pp. 35-50.

    Google Scholar 

  5. Kolmogorov, A.N. and Uspensky, V.A., Algorithms and Randomness, Teor. Veroyatn. Primen., 1987, vol. 32,no. 3, pp. 425-455.

    Google Scholar 

  6. Vovk, V.G., The Law of the Iterated Logarithm for Random Kolmogorov, or Chaotic Sequences, Teor. Veroyatn. Primen., 1987, vol. 32, pp. 456-468.

    Google Scholar 

  7. Billingsley, P., Ergodic Theory and Information, New York: Wiley, 1965. Translated under the title Ergodicheskaya teoriya i informatsiya, Moscow: Mir, 1969.

    Google Scholar 

  8. Shiryaev, A.N., Veroyatnost', Moscow: Nauka, 1980. Translated under the title Probability, New York: Springer, 1984.

    Google Scholar 

  9. Uspensky, V.A., Semenov, A.L., and Shen', A.Kh., Can an Individual Sequence of Zeros and Ones be Random?, Uspekhi Mat. Nauk, 1990, vol. 45,no. 1, pp. 105-162 [Russian Math. Surveys (Engl. Transl.), 1990, vol. 45, no. 1, pp. 121–189].

    Google Scholar 

  10. Vovk, V.G., V'yugin, V.V., Prequential Level of Impossibility with Some Applications, J. Royal Stat. Soc., Ser. B, 1994, vol. 56, pp. 115-123.

    Google Scholar 

  11. Shields, P.C., Cutting and Stacking: A Method for Constructing Stationary Processes, IEEE Trans. Inf. Theory, 1991, vol. 37,no. 6, pp. 1605-1617.

    Google Scholar 

  12. Shields, P.C., Two Divergence-Rate Counterexamples, J. Theor. Probab., 1993, vol. 6,no. 3, pp. 521-545.

    Google Scholar 

  13. Ornstein, D., Ergodic Theory, Randomness, and Dynamical Systems, New Haven: Yale Univ. Press, 1973. Translated under the title Ergodicheskaya teoriya, sluchainost' i dinamicheskie sistemy, Moscow: Mir, 1978.

    Google Scholar 

  14. Rogers, H., Theory of Recursive Functions and Effective Computability, New York: McGraw-Hill, 1967. Translated under the title Teoriya rekursivnykh funktsii i effektivnaya vychislimost', Moscow: Mir, 1972.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

V'yugin, V.V. Nonrobustness Property of the Individual Ergodic Theorem. Problems of Information Transmission 37, 108–119 (2001). https://doi.org/10.1023/A:1010418008049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010418008049

Keywords

Navigation