Skip to main content
Log in

An Overview on Technologies for Access Nodes in Ultra-Fast OTDM Photonic Networks

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, photonic technologies for the realization of high-capacity optical time-division multiplexed (OTDM) local and metropolitan area networks (LANs and MANs) are addressed including all-optical techniques such as ultra short pulse generation, all-optical clock recovery, optical multiplexing/demultiplexing, and optical packet compression/decompression. Furthermore, the new trends in high-speed electronics, data processing and optical interconnects are analyzed enabling the avoidance of the electronic processing bottleneck. By the use of both, high-speed electronics for implementing functions of higher complexity with higher level of parallelism and all-optical techniques for the realization of simple ultra fast (> 40 Gbit/s) medium access functions, a hybrid medium access node capable of handling high data rates can be designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Seo, et al., Transparent optical networks with time-division multiplexing, IEEE J. Select. Areas Commun., vol. 14, no. 5, (June 1996), pp. 1036–1051.

    Google Scholar 

  2. H. G. Weber, et al., Optical time-division-demultiplexing techniques using semiconductor laser amplifiers, Proceedings of ECOC'96, Oslo, Norway, (Sept. 1996),, vol. 4, pp. 4.3–4.6.

    Google Scholar 

  3. D. MSpirit, et al., Optical time division multiplexing: Systems and networks, IEEE Communications Magazine,, vol. 32, no. 12, (Dec. 1994), pp. 56–62.

    Google Scholar 

  4. M. Saruwatari, High-speed optical signal processing for communications systems, IEICE Trans. Commun.,, vol. E78-B, (May 1995), pp. 635–643.

    Google Scholar 

  5. T. J. Xia, et al., All-optical packet-drop demonstration using 100-Gbit/s words by integrating fiber-based components, IEEE Photon. Technol. Lett.,, vol. 10, (Jan. 1998), pp. 153–155.

    Google Scholar 

  6. R. A. Barry, et al., All-optical network consortium—ultrafast TDM networks, IEEE J. on Select. Areas in Commun.,, vol. 14, (June 1996), pp. 999–1011.

    Google Scholar 

  7. M. Nakazawa, Toward terabit/s single-channel transmission, Proceedings of OFC/IOOC'99, San Diego,, vol. 4, (Feb. 1999), pp. 132–134.

    Google Scholar 

  8. K. Bengi, S. Aleksi  c, Design considerations for a slotted OTDM ring LAN, Proceedings of NOC2000, Stuttgart, Germany, (June 2000), pp. 191–198.

  9. S. Nakamura, et al., 168 Gps error-free demultiplexing with hybrid-integrated symmetric Mach-Zehnder all-optical switch, Proceedings of OFC'2000, Baltimore, Maryland, (March 2000), pp. 81–83 (ThF3-1-ThF3-3).

  10. I. Glesk, K. I. Kang, P. R. Prucnal, Ultrafast photonic packet switching with optical control, OSAOptics Express,, vol. 1, no. 5, (September 1997), pp. 126–132.

    Google Scholar 

  11. J. Van Campenhout, H. Van Marck, J. Depreitere, J. Dambre, Optoelectronic FPGA's, IEEE Journal of Selected Topics in Quantum Electronics,, vol. 5, no. 2, (March/April 1999), pp. 306–315.

    Google Scholar 

  12. R. Ludwig et. al. A Tunable Femtosecond Modelocked semiconductor laser for applications in OTDM-Systems, IEICE Trans. Electron.,, vol. E81-C, no. 2, (February 1998), pp. 140–145.

    Google Scholar 

  13. K. Sato, et al., High-repetition frequency pulse generation at over 40 GHz using mode-locked lasers integrated with electroabsorption modulators, IEICE Trans. Electron., vol. E 81-C, no. 2, (February 1998), pp. 146–150.

    Google Scholar 

  14. A. Ehrhardt, et al. Characterization of an all-optical clock recovery operating in access of 40 Gbit/s, Proceedings of ECOC'96, Oslo, Norway, (Sept. 1996), pp. 4.19–4.22.

  15. F. K. Kneubühl/ M. W. Laser, (B. G. Teubner Stuttgart, 1989), ISBN 3–519-23032-1.

  16. I. N. Dulling III, Subpicosecond all-fiber erbium laser, Electron. Lett.,, vol. 27, (1991), pp. 544–545.

    Google Scholar 

  17. B. Sartorius, et al. Bit-rate ¯exible all-optical clock recovery, Technical Digest OFC'99, San Diego, California, (February 1999), pp. 24–26 (FB1-1-FB1-3).

  18. S. Diez, et al. 160 Gb/s All-optical demultiplexing using a gain-transparent ultrafast-nonlinear interferometer, Optical Amplifiers and Their Applications, (July 2000), Quebec-Canada ( postdeadline paper).

  19. H. Toda, F. Nakada, M. Suzuki, A. Hasegawa, An optical packet compressor using a fiber loop for a feasible all optical TDM network, Proceeding of ECOC'99, Nice, France, (Sept. 1999), pp. I-256-I-257.

  20. N. S. Patel, K. L. Hall, K. A. Rauschenbach, Optical rate conversion for high-speed TDM networks, IEEE Photonics Technology Letters,, vol. 9, (1997), pp. 1277–1279.

    Google Scholar 

  21. C. Xie, P. Ye, A novel scheme of optical packet-compression and decompression for all-optical packet switching networks, Proceedings of ECOC'99, Nice, France, (Sept. 1999), pp. I-258-I-259.

  22. J. D. Moores et al., 80-Gbit/s 9-kbit optical pulse storage loop, S. AleksicÂ, V. KrajinovicÂ, K. Bengi/Overview On Technologies For Access Nodes.Proceedings of OFC'97, Dallas, TX, (Feb. 1997), pp. 88–89.

  23. P. Toliver, K. L. Deng I. Glesk, P. R. Prucnal, Simultaneous optical compression and decompression of 100-Gbit/s OTDM packets using a single bidirectional optical delay line lattice, IEEE Photonics Technology Letters,, vol. 11, no. 9, (September 1999), pp. 1183–1185.

    Google Scholar 

  24. M. Yoneyama, et al., Fully electrical 40-Gbit/s TDM system prototype based on InP HEMT digital IC technologies, IEEE J. of Lightwave Technology,, vol. 18, no. 1, (January 2000), pp. 34–43.

    Google Scholar 

  25. E. Gottwald, et al., Towards a 40 Gb/s time division multiplexed optical transmission system, Proceedings of ICCT'96,, vol. 1, (1996), pp. 60–63.

    Google Scholar 

  26. M. Yoneyama, et al., 46 Gbit/s super-dynamic decision circuit module using InAlAs/InGaAs HEMTs, IEEE Electronics Letters,, vol. 33, no. 17, (Aug. 1997), pp. 1472–1474.

    Google Scholar 

  27. Xilinx XC40250XV. Data sheets.

  28. Altera APEX 20KE. Data sheets.

  29. A. A. B. Miller, Quantum-well self-electro-optic effect devices, Optical and Quantum Electronics,, vol. 22, (1990), pp. S61-S98.

    Google Scholar 

  30. D. Wiedermann, et al., Design and analysis of single-mode oxidized VCSEL's for high-speed optical interconnects, IEEE J. Select. Topics Quantum Electron.,, vol. 5, (1999), pp. 503–511.

    Google Scholar 

  31. A. L. Lentine et al., Optoelectronic VLSI switching chip with 41 Tbit/s potential optical I/O bandwidth, Electronics Letters, vol. 33, (1997), pp. 894–895.

    Google Scholar 

  32. J. Depereittere, et al., An optoelectronic 3D field program-mable gate array, Fourth International Workshop on Field Programmable Logic and Applications, Proceedings, Berlin (1994), pp. 352–360.

  33. T. H. Szymansky, et al. Field-programmable logic devices with optical input-output, OSA Applied Optics,, vol. 39, no. 5, (2000), pp. 721–32.

    Google Scholar 

  34. M. R. Feldman, et al., Holographic optical interconnects for VLSI multichip modules, IEEE Transact. on Components, Packaging, and Manufacturing Technology—Part B,, vol. 17, no. 2, (May 1994), pp. 223–227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksic, S., Krajinovic, V. & Bengi, K. An Overview on Technologies for Access Nodes in Ultra-Fast OTDM Photonic Networks. Photonic Network Communications 3, 75–90 (2001). https://doi.org/10.1023/A:1011487711803

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011487711803

Navigation