Skip to main content
Log in

Scalability of a Metropolitan Bidirectional Multifiber WDM-Ring Network

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

We analyze the scalability of a metropolitan bidirectional multifiber wavelength-division-multiplexed (WDM) ring network. The analysis is carried out by using a bidirectional transmission model for optical networks and by building an experimental network. The model includes major limiting factors in WDM-ring networks such as relative intensity noise (RIN) due to multiple Rayleigh backscattering, amplified spontaneous emission (ASE) accumulation in a cascade of bidirectional erbium-doped fiber amplifiers (EDFA), tilting of the EDFA gain spectrum and input saturation power of the EDFA. We found that in metropolitan areas the scalability of a WDM-ring network using bidirectional transmission is not mainly limited by the RIN arising from the Rayleigh backscattering. The result was verified experimentally. The maximum size of the demonstrated network is 33–43 nodes with a spacing of 5–10 km between nodes. With this spacing, which is typical in metropolitan areas, the scalability of the network is mainly limited by the gain tilt and the input saturation power of the EDFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Saleh, J. M. Simmons, Architectural principles of optical regional and metropolitan access networks, Journal of Lightwave Technology, vol. 17,no. 12, (Dec. 1999), pp. 2431-2448.

    Google Scholar 

  2. E. Lowe, Current European WDM deployment trends, IEEE Communications Magazine, vol. 36,no. 2, (Feb. 1998), pp. 46-50.

    Google Scholar 

  3. A. F. Elrefaie, Multiwavelength survivable ring network architectures, Proc. of ICC'93, vol. 2, (Geneva, Switzerland, May 1993), pp. 1245-1251.

    Google Scholar 

  4. L. Wuttisittikulkij, M. J. O'Mahony, Multiwavelength self-healing ring transparent networks, Proc. of GLOBECOM'95, vol. 1, (Singapore, Nov. 1995), pp. 45-49.

    Google Scholar 

  5. J. Bannister, M. Gerla, M. Kovačevié, An all optical multifiber tree network, INFOCOM'93, vol. 1, (San Francisco, CA, USA, April 1993), pp. 282-292.

    Google Scholar 

  6. N. Nagatsu, A. Watanabe, S. Okamoto, K. Sato, Architectural analysis of multiple fiber ring networks employing optical paths, Journal of Lightwave Technology, vol. 15,no. 10, (Oct. 1997), pp. 1794-1804.

    Google Scholar 

  7. H. Obara, H. Masuda, K. Suzuki, K. Aida, Multifiber wavelength division multiplexed ring network architecture for tera-bit/s throughput, Proc. IEEE of ICC'98, vol. 2, (Atlanta, GA, June 1998), pp. 921-925.

    Google Scholar 

  8. S. Johansson et al., A cost-effective approach to introduce an optical WDM network in the metropolitan environment, IEEE Journal of Selected Areas in Communications, vol. 16,no. 7, (Sep. 1998), pp. 1109-1121.

    Google Scholar 

  9. K.-P. Ho, S.-K. Liaw, C. Lin, Performance of an eight-wavelength bidirectional WDM add/drop multiplexer with 80 Gbit/s capacity, Proc. of OFC'97, (Dallas, Texas, USA, Feb. 1997), pp. 90-91.

  10. H. Obara, H. Masuda, K. Aida, Transmission over a 200 km single-fiber bidirectional ring network with reconfigurable add/drop repeaters, Proc. of ECOC'97, (Edinburgh, Scotland, Sep., 1997), pp. 9-12.

  11. C. H. Kim, C.-H. Lee, Y. C. Chung, Bidirectional WDM self-healing ring network based on simple bidirectional add/drop amplifier modules, IEEE Photonics Technology Letters, vol. 10,no. 9, (Sep. 1998), pp. 1340-1342.

    Google Scholar 

  12. Y. Zhao, X. J. Zhao, J. H. Chen, F. S. Choa, Y. J. Chen, A novel bidirectional add/drop module for single fiber bi-directional self-healing wavelength division multiplexed ring networks, Proc. of OFC'99, (San Diego, CA, Feb. 1999), pp. 183-185.

  13. S. Tammela, J. Aarnio, A. Tervonen, Survivable WDM/SDM ring for metropolitan networks, Proc. of SPIE, vol. 3531, (1998), pp. 448-454.

    Google Scholar 

  14. K. Ylä-Jarkko, S. Tammela, A. Tervonen, Bidirectional WDM multifiber ring network with shared-pump EDFAs, Proc. ECOC'99, vol. 1, (Nice, France, Sep. 1999), pp. 46-47.

    Google Scholar 

  15. K. Ylä-Jarkko, S. Tammela, Tapio Niemi, A. Tervonen, Scalability of a multifiber bidirectional metropolitan WDM ring network, Proc. of ECOC'00, vol. 3, (München, Germany, Sep. 2000), pp. 81-82.

    Google Scholar 

  16. C. Delisle, J. Conradi, Model for bidirectional transmission in an open cascade of optical amplifiers, Journal of Lightwave Technology, vol. 15,no. 5, (May 1997), pp. 749-757.

    Google Scholar 

  17. R. K. Staubli, P. Gysel, Crosstalk penalties due to coherent Rayleigh noise in bidirectional optical communication systems, Journal of Lightwave Technology, vol. 9,no. 3, (Mar. 1991), pp. 375-380.

    Google Scholar 

  18. P. J. Legg, M. Tur, I. Andonovic, Solution paths to limit interferometric noise induced performance degradation in ASK/direct detection lightwave networks, Journal of Lightwave Technology, vol. 14,no. 9, (Sep. 1996), pp. 1943-1953.

    Google Scholar 

  19. T. Niemi, S. Tammela, T. Kajava, M. Kaivola, H. Ludvigsen, Temperature-tunable silicon-wafer etalon for frequency chirp measurements, Microwave and Optical Technology Letters, vol. 20,no. 2, (Feb. 1999), pp. 190-192.

    Google Scholar 

  20. L. Gimlett, N. K. Cheung, Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems, Journal of Lightwave Technology, vol. 7,no. 6, (June 1989), pp. 888-895.

    Google Scholar 

  21. L. Gimlett, M. Z. Iqbal, L. Curtis, N. K. Cheung, Impact of multiple reflection noise in Gbit/s lightwave systems with optical amplifiers, IEE Electronic Letters, vol. 25,no. 20, (Sep. 1989), pp. 1393-1394.

    Google Scholar 

  22. J. L. Gimlett, M. Z. Iqbal, N. K. Cheung, A. Righetti, F. Fontana, G. Grasso, Observation of equivalent Rayleigh scattering mirrors in lightwave systems with optical amplifiers, IEEE Photonics Technology Letters, vol. 2,no. 3, (Mar. 1990), pp. 211-213.

    Google Scholar 

  23. P. Wan, J. Conradi et al., Impact of double Rayleigh backscatter noise on digital and analog fiber systems, Journal of Lightwave Technology, vol. 14,no. 3, (Mar. 1996), pp. 288-297.

    Google Scholar 

  24. M. O. van Deventer, Polarization properties of Rayleigh backscattering in single-mode fibers, Journal of Lightwave Technology, vol. 11,no. 12, (Dec. 1993), pp. 1895-1899.

    Google Scholar 

  25. S. D. Dods, J. P. R. Lacey, R. S. Tucker, Performance of WDM ring and bus networks in the presence of homodyne crosstalk, Journal of Lightwave Technology, vol. 17,no. 3, (Mar. 1999), pp. 388-396.

    Google Scholar 

  26. E. L. Goldstein, L. Eskildsen, Scaling limitations in transparent optical networks due to low-level crosstalk, IEEE Photonics Technology Letters, vol. 7,no. 1, (Jan. 1995), pp. 93-94.

    Google Scholar 

  27. J. Burgmeier, A. Cords, R. März, C. Scäffer, B. Stummer, A black box model of EDFA's operating in WDM systems, Journal of Lightwave Technology, vol. 16,no. 7, (July 1998), pp. 1271-1275.

    Google Scholar 

  28. E. Desurvire, Erbium-doped fiber amplifiers—Principles and applications, (Wiley, New York, 1994), pp. 354-369.

    Google Scholar 

  29. G. P. Agrawal, Fiber Optic Communication Systems, second ed. (Wiley, New York, 1997), pp. 150-173.

    Google Scholar 

  30. N. A. Olsson, Lightwave systems with optical amplifiers, Journal of Lightwave Technology, vol. 7,no. 7, (July 1989), pp. 1071-1082.

    Google Scholar 

  31. N. Aberkane et al., Error-floor free 2.5 Gbit/s transmission over 360 km using directly modulated 1.55 μm DFB lasers, Proc. of ECOC'99, (Nice, France, Sep. 1999), vol. 2, pp. 352-353.

    Google Scholar 

  32. M. J. Yadlowski, V. L. da Silva, Experimental comparison of the effect of discrete and distributed path inpand crosstalk on system performance: Application to predicting system performance penalties, Journal of Lightwave Technology, vol. 16,no. 10, (Oct. 1998), pp. 1813-1821.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ylä-Jarkko, K., Leppihalme, M., Tammela, S. et al. Scalability of a Metropolitan Bidirectional Multifiber WDM-Ring Network. Photonic Network Communications 3, 349–362 (2001). https://doi.org/10.1023/A:1011908028357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011908028357

Navigation