Abstract
In this paper we establish direct and inverse theorems for Stancu operator. Some other approximation properties of these operators are also given.
Similar content being viewed by others
REFERENCES
H. BERENS AND G. G. LORENTZ, Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J. 21 (1972), 693–708.
R. A. DEVORE AND G. G. LORENTZ, Constructive Approximation, Springer Verlag, Berlin-Heidelberg-New York-London, 1993.
Z. DITZIAN AND V. TOTIK, Moduli of Smoothness, Springer Verlag, Berlin-Heidelberg-New York-London, 1987.
H. H. GONSKA AND J. MEIER, Quantitative theorems on approximation by Bernstein-Stancu operators, Calcolo 21 (4) (1984), 317–335.
H. B. KNOOP AND X. L. ZHOU, The lower estimate for linear positive operators (II), Results in Mathematics 25 (1994), 315–330.
D. D. STANCU, Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl. XIII (8) (1968), 1173–1194.
V. TOTIK, Approximation by Bernstein polynomials, Amer. J. Math. 116 (4) (1994), 995–1018.
Rights and permissions
About this article
Cite this article
Finta, Z. Direct and converse results for Stancu operator. Periodica Mathematica Hungarica 44, 1–6 (2002). https://doi.org/10.1023/A:1014931000550
Issue Date:
DOI: https://doi.org/10.1023/A:1014931000550