Skip to main content
Log in

Gains and costs of informationin stochastic programming

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The paper reviews the role of sensors as a variable depicting information in a stochasticprogram. Through examples, and with mathematical analysis of random measures, it isshown how policy variables affect the sensors in a given problem. Sensors are amenable tomathematical derivations. It is shown how the trade‐off between the gain from introducingnew information into the problem, and the cost of that action, can be addressed. Suggestionsfor further investigation are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Adam, A model of the trade-off between the cost of information and its utility, MSc. Dissertation, The Weizmann Institute of Science, Rehovot, 1996.

    Google Scholar 

  2. B. Allen, Neighboring information and distribution of agents' characteristics under uncertainty, J. Mathematical Economics 12(1983)63–101.

    Google Scholar 

  3. B. Allen, Convergence of σ-fields and applications to mathematical economics, in: Selected Topics in Operations Research and Mathematical Economics, eds. G. Hammer and D. Rallaschke, Lecture Notes in Economics and Mathematical Systems 225, Springer, Berlin, 1984, pp. 161–173.

    Google Scholar 

  4. B. Allen and T. Van Zandt, Uniform continuity of information combination: A corrigendum, J. Mathematical Economics 21(1992)453–459.

    Google Scholar 

  5. Z. Artstein, Sensitivity to σ-fields of information in stochastic allocation, Stochastics and Stochastics Reports 36(1991)41–63.

    Google Scholar 

  6. Z. Artstein, Sensitivity with respect to the underlying information in stochastic programs, J. Computational and Applied Mathematics 56(1994)127–136.

    Google Scholar 

  7. Z. Artstein, Probing for information in two-stage stochastic programming and the associated consistency, in: Asymptotic Statistics, eds. P. Mandl and M. Hušková, Springer, Berlin, 1994, pp. 21–33.

    Google Scholar 

  8. Z. Artstein, Relaxation with Young measures and best approximation in Lp spaces, Research Report, The Weizmann Institute, Rehovot, May 1997.

    Google Scholar 

  9. Z. Artstein and R.J-B Wets, Sensors and information in optimization under stochastic uncertainty, Mathematics of Operation Research 18(1993)523–547.

    Google Scholar 

  10. Z. Artstein and R.J-B Wets, Stability results for stochastic programs and sensors, allowing for discontinuous objective functions, SIAM J. Optimization 4(1994)537–550.

    Google Scholar 

  11. R.B. Ash, Information Theory, Wiley, New York, 1966.

    Google Scholar 

  12. R.B. Ash, Real Analysis and Probability, Academic Press, New York, 1972.

    Google Scholar 

  13. M. Avriel and A.C. Williams, The value of information and stochastic programming, Operations Research 18(1970)947–954.

    Google Scholar 

  14. B. Bassan and M. Scarsini, On the value of information in multi-agent decision theory, J. Mathematical Economics 24(1995)557–576.

    Google Scholar 

  15. A. Ben-Tal and E. Hochman, Stochastic programs with incomplete information, Operations Research 24(1976)336–347.

    Google Scholar 

  16. D. Bertsekas and S.E. Shreve, Stochastic Optimal Control: The Discrete Time Case, Academic Press, New York, 1978.

    Google Scholar 

  17. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

    Google Scholar 

  18. J.R. Birge, The value of the stochastic solution in stochastic linear programs with fixed recourse, Mathematical Programming 24(1982)314–325.

    Google Scholar 

  19. J.R. Birge and M. Teboulle, Upper bounds on the expected value of a convex function using gradient and conjugate function information, Mathematics of Operations Research 14 (1989)745–759.

    Google Scholar 

  20. E.S. Bolyan, Equiconvergence of martingales, Annals of Mathematical Statistic 42(1971)552–559.

    Google Scholar 

  21. N.N. Čencov, Statistical Decision Rules and Optimal Inference, Translations of Mathematical Monographs, Vol. 53, American Mathematical Society, Providence, 1982.

    Google Scholar 

  22. K. Cotter, Similarity of information and behavior with a pointwise convergence topology, J. Mathematical Economics 15(1986)25–38.

    Google Scholar 

  23. K. Cotter, Convergence of information, random variables and noise, J. Mathematical Economics 16(1987)39–51.

    Google Scholar 

  24. M.H. DeGroot, Optimal Statistical Decisions, McGraw-Hill, New York, 1970.

    Google Scholar 

  25. M.A.H. Dempster, On stochastic programming. II: Dynamic problems under risk, Stochastics 25(1988)15–42.

    Google Scholar 

  26. L.E. Dubins and D.A. Freedman, Random distribution functions, Bulletin American Mathematical Society 69(1963)548–551.

    Google Scholar 

  27. J. Dupačová, Stochastic programming with incomplete information: A survey of results on post optimization and sensitivity analysis, Optimization 18(1987)507–532.

    Google Scholar 

  28. J. Dupačová, Stability and sensitivity analysis for stochastic programming, Annals of Operations Research 27(1990)115–147.

    Google Scholar 

  29. J. Dupačová, On statistical sensitivity: An analysis in stochastic programming, Annals of Operations Research 30(1991)199–214.

    Google Scholar 

  30. Yu. Ermoliev, A. Gaivoronski and C. Nedeva, Stochastic optimization problems with incomplete information on distribution functions, SIAM J. Control Optimization 23(1985)697–716.

    Google Scholar 

  31. T.S. Ferguson, Mathematical Statistics. A Decision Theoretic Approach, Academic Press, New York, 1967.

    Google Scholar 

  32. D.B. Hausch and W.T. Ziemba, Bounds on the value of information in uncertain decision problems II, Stochastics 10(1983)181–217.

    Google Scholar 

  33. C.C. Huang, I. Vertinsky and W.T. Ziemba, Sharp bounds on the value of perfect information, Operations Research 25(1977)128–139.

    Google Scholar 

  34. C.C. Huang, W.T. Ziemba and A. Ben-Tal, Bounds on the expectation of a convex function of a random variable: With applications to stochastic programming, Operations Research 25(1977) 315–325.

    Google Scholar 

  35. C.-F. Huang and R.H. Litzenberger, Foundation of Financial Economics, North-Holland, New York, 1988.

    Google Scholar 

  36. P. Kall and S.W. Wallace, Stochastic Programming, Wiley, Chichester, 1994.

    Google Scholar 

  37. A.N. Kolmogorov, Foundation of the Theory of Probability, English translation, Chelsea, New York, 1950.

  38. H. Kudo, A note on the strong convergence of σ-algebras, Annals of Probability 2(1974)76–83.

    Google Scholar 

  39. S. Kullback, Information and Statistics, Wiley, New York, 1959.

    Google Scholar 

  40. D. Landers and L. Rogge, An inequality for the Haousdorff-metric of σ-fields, Annals of Probability 14(1986)724–730.

    Google Scholar 

  41. M. Loève, Probability Theory II, 4th ed., Springer, New York, 1978.

    Google Scholar 

  42. P.A. Meyer, Probability and Potential, Blaisdell, Waltham, 1966.

    Google Scholar 

  43. J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.

    Google Scholar 

  44. J. Neveu, Note on the tightness of the metric on the set of complete sub σ-algebras of a probability space, Annals Mathematical Statistics 43(1972)1369–1371.

    Google Scholar 

  45. A. Prékopa, Stochastic Programming, Kluwer, Dordrecht, 1995.

    Google Scholar 

  46. S.B. Richmond, Operations Research for Management Decisions, Ronald Press, New York, 1968.

    Google Scholar 

  47. L. Rogge, Uniform inequalities for conditional expectations, Annals of Probability 2(1974)486–489.

    Google Scholar 

  48. H. Scarf, A min-max solution of an inventory problem, in: Studies in the Mathematical Theory of Inventory and Production, eds. Arrow, Karlin and Scarf, Stanford University Press, Stanford, 1958, pp. 201–209.

    Google Scholar 

  49. M.B. Stincombe, Bayesian information topologies, J. Mathematical Economics 19(1990)233–253.

    Google Scholar 

  50. M.B. Stincombe, A further note on Bayesian information topologies, J. Mathematical Economics 22(1993)189–193.

    Google Scholar 

  51. M.H. van der Vlerk, Stochastic programming bibliography, Internet, 1997 edition, http://mally.eco.rug.nl/biblio/stoprog.html.

  52. J.M. Wagner and O. Berman, Models for planing capacity expansion of convenience stores under uncertain demand and the value of information, Annals of Operations Research 59(199519–44.

    Google Scholar 

  53. A. Wald, Statistical decision functions, Annal. Math. Statistics 20(1949)165–205

    Google Scholar 

  54. W.T. Ziemba and J.E. Butterworth, Bounds on the value of information in uncertain decision problems, Stochastics 1(1975)361–378.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artstein, Z. Gains and costs of informationin stochastic programming. Annals of Operations Research 85, 129–152 (1999). https://doi.org/10.1023/A:1018913609464

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018913609464

Keywords

Navigation