Abstract
Balas and Ng [1, 2] characterized the class of valid inequalities for the set coveringpolytope with coefficients equal to 0, 1 or 2, and gave necessary and sufficient conditionsfor such an inequality to be facet defining. We extend this study, characterizing the class ofvalid inequalities with coefficients equal to 0, 1, 2 or 3, and giving necessary and sufficientconditions for such an inequality to be not dominated, and to be facet defining.
Similar content being viewed by others
References
E. Balas and M. Ng, On the set covering polytope: I. All the facets with coefficients in {0, 1, 2}, Mathematical Programming 43(1989]57–69.
E. Balas and M. Ng, On the set covering polytope: II. All the facets with coefficients in {0, 1, 2}, Mathematical Programming 45(1989)1–20.
G. Cornuéjols and A. Sassano, On the 0, 1 facets of the set covering polytope, Mathematical Programming 43(1989)45–55.
M. Sánchez, M.I. Sobrón and C. Espinel, Facetas del politopo de recubrimiento con coeficientes en {0, 1, 2, 3}, Trabajos de Investigación Operativa 7(1992)31–41.
A. Sassano, On the facial structure of the set covering polytope, Mathematical Programming 44 (1989)181–202.
B. Vitoriano, Bloques –Antibloques. Relación con los problemas de recubrimiento y empaquetado, Doctoral Thesis, Universidad Complutense de Madrid, 1994.
Rights and permissions
About this article
Cite this article
Sánchez-García, M., Sobrón, M.I. & Vitoriano, B. On the set covering polytope:Facets with coefficients in {0, 1, 2, 3}. Annals of Operations Research 81, 343–356 (1998). https://doi.org/10.1023/A:1018969410431
Issue Date:
DOI: https://doi.org/10.1023/A:1018969410431