Skip to main content

Calculating the exact bounds of optimal valuesin LP with interval coefficients

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The paper deals with computing the exact upper and lower bounds of optimal values forlinear programming problems whose coefficients vary in given intervals. The theoreticalbackground for calculating these bounds is described and corresponding algorithms aregiven. A comparison with other approaches, some applications and a software package arementioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Beeck, Linear programming with inexact data, Report TUM-ISU-7830, Technical University, Munich, 1978.

    Google Scholar 

  2. C. Jansson, A self-validating method for solving linear programming problems with interval input data, Computing Suppl. 6(1988)33–46.

    Google Scholar 

  3. C. Jansson and S.M. Rump, Rigorous solution of linear programming problems with uncertain data, ZOR 35(1991)87–111.

    Google Scholar 

  4. R. Krawczyk, Fehlerabschätzung bei linearer Optimierung, in: Interval Mathematics, ed. K. Nickel, Springer, Berlin, 1975, pp. 215–222.

    Google Scholar 

  5. F. Mráz, Nonnegative solutions of interval linear systems, in: Computer Arithmetic and Enclosure Methods, eds. L. Atanassova and J. Herzberger, Elsevier, Amsterdam, 1992, pp. 299–308.

    Google Scholar 

  6. F. Mráz, On supremum of the solution function in linear programs with interval coefficients, KAM-Series No. 93-236, Dept. of Applied Math., Charles University, Prague, 1993, pp. 1–18.

    Google Scholar 

  7. F. Mráz, The algorithm for solving interval linear programs and comparison with similar approaches, KAM-Series No. 93-239, Dept. of Applied Math., Charles University, Prague, 1993, pp. 1–11.

    Google Scholar 

  8. F. Mráz and V. Kabele, Investigation of linear programs and their feasible solutions under uncertainty, Report Series 9, University of South Bohemia, Dept. of Math., 1993, pp. 71–82.

  9. F. Mráz, On infimum of optimal objective function values in interval linear programming, KAM-Series No.96-337, Dept. of Applied Math., Charles University, Prague, 1996, pp. 1–16.

    Google Scholar 

  10. F. Mráz, The exact lower bound of optimal values in interval LP, in: Scientific Computing and Validated Numerics, eds. G. Alefeld, A. Frommer and B. Lang, Akademie Verlag, Berlin, 1996, pp. 214–220.

    Google Scholar 

  11. F. Nožićka, J. Guddat and H. Hollatz, Theorie der linearen Optimierung, Springer, Berlin, 1972.

    Google Scholar 

  12. W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides, Numerische Mathematik 6(1964)405–409.

    Article  Google Scholar 

  13. J. Rohn, Duality in interval linear programming, in: Interval Mathematics, ed. K. Nickel, Academic Press, New York, 1980.

    Google Scholar 

  14. J. Rohn, Interval linear systems, Freiburger Intervall-Berichte 84/7(1984)33–58.

    Google Scholar 

  15. J. Rohn, Miscellaneous results on linear interval systems, Freiburger Intervall-Berichte 85/9(1985) 29–43 (1985).

    Google Scholar 

  16. J. Rohn, NP-hardness results for some linear and quadratic problems, Technical Report No. 619, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, 1995, pp. 1–11.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mráz, F. Calculating the exact bounds of optimal valuesin LP with interval coefficients. Annals of Operations Research 81, 51–62 (1998). https://doi.org/10.1023/A:1018985914065

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018985914065

Keywords