Skip to main content
Log in

A Dual Parametrization Method for Convex Semi-Infinite Programming

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We formulate convex semi-infinite programming problems in a functional analytic setting and derive optimality conditions and several duality results, based on which we develop a computational framework for solving convex semi-infinite programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.D. Andersen and E. Christiansen, Limit analysis with the dual affine scaling algorithm, Journal of Computational and Applied Mathematics 59 (1995) 233–243.

    Google Scholar 

  2. E.J. Anderson and A.B. Philpott, eds., Infinite Programming, Lecture Notes in Economics and Mathematical Systems 259 (Springer, Berlin, 1985).

    Google Scholar 

  3. E.J. Anderson and P. Nash, Linear Programming in Infinite-Dimensional Spaces: Theory and Applications, Wiley-Interscience Series in Discrete Mathematics and Optimization (Wiley, Chichester, England, 1987).

    Google Scholar 

  4. M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming: Theory and Algorithms, 2nd ed., Wiley-Interscience Series in Discrete Mathematics and Optimization (Wiley, New York, 1993).

    Google Scholar 

  5. I.D. Coope and C.J. Price, Exact penalty function methods for nonlinear semi-infinite programming, in: [44], pp. 137–157.

  6. W.S. Dorn, Duality in quadratic programming, Quarterly of Applied Mathematics 18 (1960) 155–162.

    Google Scholar 

  7. W.S. Dorn, A duality theorem for convex programs, IBM Journal of Research and Development 4 (1960) 407–413.

    Google Scholar 

  8. M.C. Ferris and A.B. Philpott, An interior point algorithm for semi-infinite linear programming, Mathematical Programming 43 (1989) 257–276.

    Google Scholar 

  9. M.C. Ferris and A.B. Philpott, On affine scaling and semi-infinite programming, Mathematical Programming 56 (1992) 361–364.

    Google Scholar 

  10. A.V. Fiacco and K.O. Kortanek, eds., Semi-Infinite Programming and Applications, Lecture Notes in Economics and Mathematical Systems 215 (Springer, Berlin, 1983).

    Google Scholar 

  11. K. Glashoff and S.-Å. Gustafson, Einführung in die lineare Optimierung(Wissenschaftliche Buchgesellschaft, Darmstadt, 1978).

    Google Scholar 

  12. K. Glashoff and S.-Å. Gustafson, Linear Optimization and Approximation, Applied Mathematical Sciences 45 (Springer, New York, 1983).

    Google Scholar 

  13. M.A. Goberna and M.A. López, Linear Semi-Infinite Optimization, Wiley Series in Mathematical Methods in Practice 2 (Wiley, Chichester, England, 1998).

    Google Scholar 

  14. G. Gramlich, R. Hettich and E.W. Sachs, Local convergence of SQP-methods in semi-infinite programming, SIAM Journal on Optimization 5 (1995) 641–658.

    Google Scholar 

  15. S.-Å. Gustafson, On the computational solution of a class of generalized moment problems, SIAM Journal on Numerical Analysis 7 (1970) 343–357.

    Google Scholar 

  16. S.-Å. Gustafson and K.O. Kortanek, Numerical treatment of a class of semi-infinite programming problems, Naval Research Logistics Quarterly 20 (1973) 477–504.

    Google Scholar 

  17. S.-Å. Gustafson, A general three-phase algorithm for nonlinear semi-infinite programs, in: Operational Research '81, ed. J.P. Brans (North-Holland, Amsterdam, 1981) pp. 495–508.

    Google Scholar 

  18. S.-Å. Gustafson and K.O. Kortanek, Semi-infinite programming and applications, in: Mathematical Programming: The State of the Art-Bonn 1982, eds. A. Bachem, M. Grötschel and B. Korte (Springer, Berlin, 1983) pp. 132–157.

    Google Scholar 

  19. R. Hettich and H.Th. Jongen, Semi-infinite programming: conditions of optimality and applications, in: Optimization Techniques, Part 2, ed. J. Stoer, Lecture Notes in Control and Information Sciences 7 (Springer, Berlin, 1978) pp. 1–11.

    Google Scholar 

  20. R. Hettich, ed., Semi-Infinite Programming, Lecture Notes in Control and Information Sciences 15 (Springer, Berlin, 1979).

    Google Scholar 

  21. R. Hettich and P. Zencke, Numerische Methoden der Approximation und Semi-Infiniten Optimierung(B.G. Teubner, Stuttgart, 1982).

    Google Scholar 

  22. R. Hettich, A review of numerical methods for semi-infinite optimization, in: [10], pp. 158–178.

  23. R. Hettich and K.O. Kortanek, Semi-infinite programming: theory, methods, and applications, SIAM Review 35 (1993) 380–429.

    Google Scholar 

  24. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I: Fundamentals, Grundlehren der Mathematischen Wissenschaften 305 (Springer, Berlin, 1993).

    Google Scholar 

  25. W.W. Hogan, Point-to-set maps in mathematical programming, SIAM Review 15 (1973) 591–603.

    Google Scholar 

  26. R.B. Holmes, Geometric Functional Analysis and its Applications(Springer, New York, 1975).

    Google Scholar 

  27. S. Ito and K. Shimizu, Dual quasi-Newton algorithm for infinitely constrained optimization problems, Transactions of the Society of Instrument and Control Engineers 27 (1991) 452–457 (in Japanese).

    Google Scholar 

  28. L.S. Jennings and K.L. Teo, A computational algorithm for functional inequality constrained optimization problems, Automatica 26 (1990) 371–375.

    Google Scholar 

  29. F. John, Extremum problems with inequalities as subsidiary conditions, in: Studies and Essays, Courant Anniversary Volume, eds. K.O. Friedrichs, O.E. Neugebauer and J.J. Stoker (Wiley, New York, 1948) pp. 187–204.

    Google Scholar 

  30. K.O. Kortanek, Vector-supercomputer experiments with the primal affine linear programming scaling algorithm, SIAM Journal on Scientific Computing 14 (1993) 279–294.

    Google Scholar 

  31. W. Krabs, Optimization and Approximation(Wiley, Chichester, England, 1979).

    Google Scholar 

  32. A.S. Lewis and A.B. Philpott, Experiments with affine scaling and semi-infinite programming, New Zealand Journal of Mathematics 24 (1995) 49–71.

    Google Scholar 

  33. C.-J. Lin, S.-C. Fang and S.-Y. Wu, A primal affine scaling based algorithm for solving linear semiinfinite programming problems, in: Advances in Optimization and Approximation, eds. D.-Z. Du and J. Sun (Kluwer Academic, Dordrecht, 1994) pp. 217–233.

    Google Scholar 

  34. Y. Liu, K.L. Teo and S. Ito, A dual parametrization approach to linear-quadratic semi-infinite programming problems, Optimization Methods and Software 10 (1999) 471–495.

    Google Scholar 

  35. D.G. Luenberger, Optimization by Vector Space Method(Wiley, New York, 1969).

    Google Scholar 

  36. O.L. Mangasarian and J. Ponstein, Minmax and duality in nonlinear programming, Journal of Mathematical Analysis and Applications 11 (1965) 504–518.

    Google Scholar 

  37. O.L. Mangasarian, Nonlinear Programming, McGraw-Hill Series in Systems Science (McGraw-Hill, New York, 1969).

    Google Scholar 

  38. E. Polak, On the mathematical foundations of nondifferentiable optimization in engineering design, SIAM Review 29 (1987) 21–89.

    Google Scholar 

  39. E. Polak, Optimization: Algorithms and Consistent Approximations, Applied Mathematical Sciences 124 (Springer, New York, 1997).

    Google Scholar 

  40. M.J.D. Powell, Log barrier methods for semi-infinite programming calculations, in: Advances on Computer Mathematics and its Applications, ed. E.A. Lipitakis (World Scientific, Singapore, 1993) pp. 1–21.

    Google Scholar 

  41. C.J. Price and I.D. Coope, An exact penalty function algorithm for semi-infinite programming, BIT 30 (1990) 723–734.

    Google Scholar 

  42. C.J. Price and I.D. Coope, Numerical experiments in semi-infinite programming, Computational Optimization and Applications 6 (1996) 169–189.

    Google Scholar 

  43. R. Reemtsen and S. Görner, Numerical methods for semi-infinite programming: a survey, in: [44], pp. 195–275.

  44. R. Reemtsen and J.-J. Rückmann, eds., Semi-Infinite Programming, Nonconvex Optimization and its Applications 25 (Kluwer Academic, Boston, 1998).

  45. R.T. Rockafellar, Convex Analysis, Princeton Mathematical Series 28 (Princeton University Press, 1970).

  46. K. Roleff, A stable multiple exchange algorithm for linear SIP, in: [20], pp. 83–96.

  47. H.H. Schaefer, Topological Vector Spaces, Graduate Texts in Mathematics 3 (Springer, New York, 1971).

    Google Scholar 

  48. U. Schättler, An interior-point method for semi-infinite programming problems, Annals of Operations Research 62 (1996) 277–301.

    Google Scholar 

  49. K. Shimizu, Y. Ishizuka and J.F. Bard, Nondifferentiable and Two-Level Mathematical Programming(Kluwer Academic, Boston, 1997).

    Google Scholar 

  50. G. Sonnevend, Applications of analytic centers for the numerical solution of semiinfinite, convex programs arising in control theory, in: System Modelling and Optimization, eds. H.-J. Sebastian and K. Tammer, Lecture Notes in Control and Information Sciences 143 (Springer, Berlin, 1990) pp. 413–422.

    Google Scholar 

  51. G. Sonnevend, A new class of a high order interior point method for the solution of convex semiin-finite optimization problems, in: Computational and Optimal Control, eds. R. Bulirsch and D. Kraft (Birkhäuser, Basel, 1994) pp. 193–211.

    Google Scholar 

  52. Y. Tanaka, M. Fukushima and T. Hasegawa, Implementable L 1 penalty function method for semiinfinite optimization, International Journal of Systems Science 18 (1987) 1563–1568.

    Google Scholar 

  53. Y. Tanaka, M. Fukushima and T. Ibaraki, A globally convergent SQP method for semi-infinite nonlinear optimization, Journal of Computational and Applied Mathematics 23 (1988) 141–153.

    Google Scholar 

  54. Y. Tanaka, M. Fukushima and T. Ibaraki, A comparative study of several semi-infinite nonlinear programming algorithms, European Journal of Operational Research 36 (1988) 92–100.

    Google Scholar 

  55. K.L. Teo, V. Rehbock and L.S. Jennings, A new computational algorithm for functional inequality constrained optimization problems, Automatica 29 (1993) 789–792.

    Google Scholar 

  56. M.J. Todd, Interior-point algorithms for semi-infinite programming, Mathematical Programming 65 (1994) 217–245.

    Google Scholar 

  57. L. Tuncel and M.J. Todd, Asymptotic behavior of interior point methods: a view from semi-infinite programming, Mathematics of Operations Research 21 (1996) 354–381.

    Google Scholar 

  58. R.J. Vanderbei, Affine scaling trajectories associated with a linear semi-infinite program, Mathematics of Operations Research 20 (1995) 163–174.

    Google Scholar 

  59. G.A. Watson, Globally convergent methods for semi-infinite programming, BIT 21 (1981) 362–373.

    Google Scholar 

  60. G.A. Watson, Numerical experiments with globally convergent methods for semi-infinite programming problems, in: [10], pp. 193–205.

  61. G.A. Watson, Lagrangian methods for semi-infinite programming problems, in: [2], pp. 90–107.

  62. P.Wolfe, A duality theorem for non-linear programming, Quarterly of AppliedMathematics 19 (1961) 239–244.

    Google Scholar 

  63. K. Yosida, Functional Analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften 123 (Springer, Berlin, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, S., Liu, Y. & Teo, K. A Dual Parametrization Method for Convex Semi-Infinite Programming. Annals of Operations Research 98, 189–213 (2000). https://doi.org/10.1023/A:1019208524259

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019208524259

Navigation