Skip to main content
Log in

Some new Gronwall-Bellman-Bihari type integral inequalities with delay

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Some new linear and nonlinear delay integral inequalities of G-B-B type are obtained which generalize some results of O. Akinyele [1], P. Ch. Tsamatos and S. K. Ntouyas [16]. Application examples are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. O. AKINYELE, On Gronwall-Bellman-Bihari type inequalities in several variables with retardation, J. Math. Anal. Appl. 104 (1984), 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. M. AZIZ and A. H. NASR, Asymptotic behavior and ocillations of second order diΩerential equations with deviating argument, J. Math. Anal. Appl. 197 (1996), 448–458.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. D. BAINOV and P. SIMEONOV, Integral Inequalities and Applications, Kluwer Academic Publishers, 1992.

  4. P. R. BEESACK, On Lakshmikantham's comparison method for Gronwall inequalities, Ann. Polon. Math. 35 (1977), 187–222.

    MATH  MathSciNet  Google Scholar 

  5. D. BOBROWSKI, J. POPENDA and J. WERBOWSKI, On the system integral inequalities with delay of Gronwall-Bellman type, Fasc. Math. 10 (1978), 97–104.

    MATH  MathSciNet  Google Scholar 

  6. F. DANNAN, Integral inequalities of Gronwall-Bellman-Bihari type and asymptotic behaviour of certain second order nonlinear diΩerential equations, J. Math. Anal. Appl. 108 (1985), 151–164.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. DANNAN, Submutiplicative and subadditive functions and integral inequalities of Bellman-Bihari type, J. Math. Anal. Appl. 120 (1986), 631–646.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. E. GREEN, An inequality for a class of integral systems, Proc. Amer. Math. Soc. 62 (1977), 101–104.

    Article  Google Scholar 

  9. Q. H. MA and E. H. YANG, On some new nonlinear delay integral inequalities, J. Math. Anal. Appl. 252 (2000), 864–878.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. MEDVED, Bihari type inequalities with multiple integral and delay, Period. Math. Hungar. 27 (1993), 207–212.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. G. PACHPATTE, A note on certain integral inequalities with delay, Period. Math. Hungar. 31 (1995), 229–234.

    Article  MATH  MathSciNet  Google Scholar 

  12. B. G. PACHPATTE, On a certain inequality arising in the theory of diΩerential equations, J. Math. Anal. Appl. 182 (1994), 143–157.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. PINTO, Integral inequalities of Bihari-type and applications, Funck. Ekvac. 33 (1990), 387–403.

    MATH  MathSciNet  Google Scholar 

  14. M. PINTO, Integration of systems resulting from the perturbation of an h-system, J. Math. Anal. Appl. 131 (1988), 194–216.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. OU-IANG, The boundedness of solutions of linear diΩerential equations Y″ + A(t)Y = 0, Shuxue Jinzhan, 3 (1957), 409–415. (in Chinese)

    Google Scholar 

  16. P. CH. TSAMATOS and S. K. NTOUYAS, On a Bellman-Bihari type integral inequalities with delay, Period. Math. Hungar. 23 (1991), 91–94.

    Article  MATH  MathSciNet  Google Scholar 

  17. E. H. YANG and R. L. GAN, Boundedness and global uniform Lipshitz-stability for solutions of two-dimensional diΩerential system, Acta Math. Appl. Scinica 17 (1994), 364–373. (in Chinese, English summary)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, QH., Yang, EH. Some new Gronwall-Bellman-Bihari type integral inequalities with delay. Periodica Mathematica Hungarica 44, 225–238 (2002). https://doi.org/10.1023/A:1019600715281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019600715281