Skip to main content
Log in

Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We introduce simple qubit-encodings and logic gates which eliminate the need for certain difficult single-qubit operations in superconducting phase-qubits, while preserving universality. The simplest encoding uses two physical qubits per logical qubit. Two architectures for its implementation are proposed: one employing N physical qubits out of which N/2 are ancillas fixed in the |1 state, the other employing N/2+1 physical qubits, one of which is a bus qubit connected to all others. Details of a minimal set of universal encoded logic operations are given, together with recoupling schemes, that require nanosecond pulses. A generalization to codes with higher ratio of number of logical qubits per physical qubits is presented. Compatible decoherence and noise suppression strategies are also discussed.

PACS: 03.67.Lx; 85.25.Hv; 03.67.-a; 89.70.+c

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. P. DiVincenzo, Fort. der Physik 48, 771 (2000), quant-ph/0002077.

    Google Scholar 

  2. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).

    Google Scholar 

  3. P. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan, in 40th Annual Symposium on Foundations of Computer Science (IEEE Comput. Soc., Los Alamitos, CA, 1999), p. 486, quant-ph/9906054.

    Google Scholar 

  4. D. Aharonov and M. Ben-Or, in Proceedings of 29th Annual ACM Symposium on Theory of Computing (STOC) (ACM Press, New York, 1997), p. 46, quant-ph/9611025.

    Google Scholar 

  5. E. Knill, R. Laflamme, and W. Zurek, Science 279, 342 (1998).

    Google Scholar 

  6. D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley, Phys. Rev. Lett. 85, 1758 (2000), quant-ph/9909058.

    Google Scholar 

  7. D. Bacon, J. Kempe, D. P. DiVincenzo, D. A. Lidar, and K. B. Whaley, in Proceedings of the 1st International Conference on Experimental Implementations of Quantum Computation, Sydney, Australia, R. Clark ed. (Rinton, Princeton, NJ, 2001), p. 257, quant-ph/0102140.

    Google Scholar 

  8. J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, Phys. Rev. A 63, 042307 (2001), quant-ph/0004064.

    Google Scholar 

  9. D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, Nature 408, 339 (2000).

    Google Scholar 

  10. L.-A. Wu and D. A. Lidar, Phys. Rev. A 65, 042318 (2002), quant-ph/0103039.

    Google Scholar 

  11. J. Levy, ''Universal quantum computation with spin-1/2 pairs and Heisenberg exchange'' (2001), quant-ph/0101057.

  12. S. C. Benjamin, Phys. Rev. A 64, 054303 (2001), quant-ph/0104034.

    Google Scholar 

  13. D. A. Lidar and L.-A. Wu, Phys. Rev. Lett. 88, 017905 (2002), quant-ph/0109021.

    Google Scholar 

  14. L.-A. Wu and D. A. Lidar, ''Qubits as parafermions'' (2001), quant-ph/0109078.

  15. J. Kempe, D. Bacon, D. P. DiVincenzo, and K. B. Whaley, ''Encoded universality from a single physical interaction'' (2001), quant-ph/0112013.

  16. J. Kempe and K. B. Whaley, ''Exact gate-sequences for universal quantum computation using the XY-interaction alone'' (2001), quant-ph/0112014.

  17. L.-A. Wu and D. A. Lidar, ''Universal quantum logic from Zeeman and anisotropic exchange interactions'' (2002), quant-ph/0202135.

  18. J. Vala and K. B. Whaley, ''Encoded universality for generalized anisotropic exchange Hamiltonians'' (2002), quant-ph/0204016.

  19. R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001), quant-ph/0010033.

    Google Scholar 

  20. M. Nielsen, ''Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 state'' (2001), quant-ph/0108020.

  21. Ll. Masanes, G. Vidal, and J. I. Latorre, ''Time-optimal Hamiltonian simulation and gate synthesis using homogeneous local unitaries'' (2002), quant-ph/0202042.

  22. D. W. Leung, ''Two-qubit projective measurements are universal for quantum computation'' (2001), quant-ph/0111122.

  23. L.-A. Wu, M. S. Byrd, and D. A. Lidar, ''Efficient universal leakage elimination for physical and encoded qubits'' (2002), quant-ph/0202168.

  24. L.-A. Wu and D. A. Lidar, ''Creating decoherence-free subspaces'' (2001), quant-ph/ 0112144.

  25. M. S. Byrd and D. A. Lidar, ''Combined encoding, recoupling, and decoupling solution to problems of decoherence and design in solid-state quantum computing'' (2001), quant-ph/ 0112054.

  26. L. Viola, ''On quantum control via encoded dynamical decoupling'' (2001), quant-ph/0111167.

  27. E. M. Fortunato, L. Viola, J. Hodges, G. Teklemariam, and D. G. Cory, ''Implementation of universal control on a decoherence-free qubit'' (2001), quant-ph/0111166.

  28. C. H. v.d. Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, and J. E. Mooij, Science 290, 773 (2000).

    Google Scholar 

  29. J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Nature 406, 43 (2000).

    Google Scholar 

  30. Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

    Google Scholar 

  31. A. M. Zagoskin, ''A scalable, tunable qubit, based on a clean DND or grain boundary D-D junction'' (1999), cond-mat/9903170.

  32. A. Blais and A. M. Zagoskin, Phys. Rev. A 61, 042308 (2000), quant-ph/9905043.

    Google Scholar 

  33. G. Blatter, V. B. Geshkenbein, and L. V. Ioffe, Phys. Rev. B 63, 174511 (2001).

    Google Scholar 

  34. J. S. Waugh, L. M. Huber, and U. Haeberlen, Phys. Rev. Lett. 20, 180 (1968).

    Google Scholar 

  35. C. Slichter, Principles of Magnetic Resonance, no. 1 in Springer Series in Solid-State Sciences (Springer, Berlin, 1996).

    Google Scholar 

  36. M. E. Rose, Elementary Theory of Angular Momentum (Dover, New York, 1995).

    Google Scholar 

  37. D. A. Lidar, D. Bacon, J. Kempe, and K. B. Whaley, Phys. Rev. A 63, 022307 (2001), quant-ph/0007013.

    Google Scholar 

  38. V. Protopopescu, R. Perez, C. D'Helon, and J. Schmulen, ''Robust control of decoherence in realistic quantum gates'' (2002), quant-ph/0202141.

  39. J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. v.d. Wal, and S. Lloyd, Science 285, 1036 (1999).

    Google Scholar 

  40. T. P. Orlando, J. E. Mooij, L. Tian, C. H. v.d. Wal, L. S. Levitov, S. Lloyd, and J. J. Mazo, Phys. Rev. B 60, 15398 (1999).

    Google Scholar 

  41. M. H. S. Amin, A. N. Omelyanchouk, A. Blais, A. Maassen v.d. Brink, G. Rose, T. Duty, and A. M. Zagoskin, Physica C 368, 310 (2002), cond-mat/0109382.

    Google Scholar 

  42. A. M. Steane, in Introduction to Quantum Computation and Information, H. K. Lo, S. Popescu, and T. P. Spiller eds, (World Scientific, Singapore, 1999), p. 184.

    Google Scholar 

  43. J. A. Jones and E. Knill, J. Magn. Reson. 141, 322 (1999), quant-ph/9905008.

    Google Scholar 

  44. D. W. Leung, I. L. Chuang, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. A 61, 042310 (2000), quant-ph/9904100.

    Google Scholar 

  45. L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998), quant-ph/9803057.

    Google Scholar 

  46. L.-M. Duan and G. Guo, Phys. Lett. A 261, 139 (1999), quant-ph/9807072.

    Google Scholar 

  47. P. Zanardi, Phys. Lett. A 258, 77 (1999), quant-ph/9809064.

    Google Scholar 

  48. D. Vitali and P. Tombesi, Phys. Rev. A 59, 4178 (1999), quant-ph/9808055.

    Google Scholar 

  49. L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999).

    Google Scholar 

  50. L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 83, 4888 (1999), quant-ph/9906094.

    Google Scholar 

  51. L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 85, 3520 (2000), quant-ph/0002072.

    Google Scholar 

  52. D. Vitali and P. Tombesi, Phys. Rev. A 65, 012305 (2002), quant-ph/0108007.

    Google Scholar 

  53. M. S. Byrd and D. A. Lidar, ''Bang-Bang operations from a geometric perspective'' (2001), quant-ph/0110121.

  54. P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997), quant-ph/9705044.

    Google Scholar 

  55. D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett. 81, 2594 (1998), quant-ph/ 9807004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Lidar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lidar, D.A., Wu, LA. & Blais, A. Quantum Codes for Simplifying Design and Suppressing Decoherence in Superconducting Phase-Qubits. Quantum Information Processing 1, 155–182 (2002). https://doi.org/10.1023/A:1019821008131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019821008131

Navigation