Skip to main content
Log in

Reconstruction of Sparse Vectors in White Gaussian Noise

  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We consider the problem of reconstruction of a sparse vector observed against a background of white Gaussian noise. The sparsity is assumed to be unknown. Two approaches to statistical estimation in this case are discussed, namely, the model selection method and threshold estimators. We propose a method of selecting a threshold estimator based on the principle of empirical complexity minimization with minimal conservative penalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Härdle, W., Kerkyacharian, G., Picard, D., and Tsybakov, A., Wavelets, Approximation, and Statistical Applications, New York: Springer, 1998.

    Google Scholar 

  2. Donoho, D.L. and Johnstone, I.M., Ideal Spatial Adaptation via Wavelet Shrinkage, Biometrika, 1994, vol. 81, pp. 425-455.

    Google Scholar 

  3. Ruderman, D.L., The Statistics of Natural Images, Network: Computation in Neural Systems, 1994, vol. 5, pp. 517-548.

    Google Scholar 

  4. Abramovich, F., Benjamini, Y., Donoho, D., and Johstone, I., Adapting to Unknown Sparsity by Controlling False Discovery Rate, to appear in Ann. Statist..

  5. Kneip, A., Ordered Linear Smoothers, Ann. Statist., 1994, vol. 22, pp. 835-866.

    Google Scholar 

  6. Barron, A., Birgé, L., and Massart, P., Risk Bounds for Model Selection via Penalization, Probab. Theory Related Fields, 1999, vol. 113, pp. 301-413.

    Google Scholar 

  7. Akaike, H., Information Theory and an Extension of the Maximum Likelihood Principle, Proc. 2nd Int. Symp. on Information Theory, Tsahkadsor, Armenia, USSR, 1971, Petrov, P.N. and Csaki, F., Eds., Budapest: Akad. Kiado, 1973, pp. 267-281.

    Google Scholar 

  8. Mallows, C.V., Some Comments on C p, Technometrics, 1973, vol. 15, pp. 661-675.

    Google Scholar 

  9. Golubev, G.K. and Nussbaum, M., Adaptive Spline Estimates in a Nonparametric Regression Model, Teor. Veroyatn. Primen., 1992, vol. 37, no. 3, pp. 554-561.

    Google Scholar 

  10. Golubev, G.K., Nonparametric Estimation of Smooth Probability Densities in L 2, Probl. Peredachi Inf., 1992, vol. 28, no. 1, pp. 52-62 [Probl. Inf. Trans. (Engl. Transl.), 1992, vol. 28, no. 1, pp. 44-54].

    Google Scholar 

  11. Golubev, G.K., Nonparametric Estimation of Smooth Spectral Densities of Gaussian Stationary Sequences, Teor. Veroyatn. Primen., 1993, vol. 38, no. 4, pp. 775-786.

    Google Scholar 

  12. Fano, R.M., (Transmission of Information; a Statistical Theory of Communications), New York: M.I.T. Press, 1961. Translated under the title Peredacha informatsii. Statisticheskaya teoriya svyazi, Moscow: Mir, 1965.

    Google Scholar 

  13. Leadbetter, M.R., Lindgren, G., and Rootzén, H., Extremes and Related Properties of Random Sequences and Processes, New York: Springer, 1983. Translated under the title Ekstremumy sluchainykh posledovatel'nostei i protsessov, Moscow: Mir, 1989.

    Google Scholar 

  14. Nemirovskii, A., Topics in Nonparametric Statistics, Lect. Notes d'Ecole d'été probabilités de St. Flour, 1998.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubev, G.K. Reconstruction of Sparse Vectors in White Gaussian Noise. Problems of Information Transmission 38, 65–79 (2002). https://doi.org/10.1023/A:1020098307781

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020098307781

Keywords

Navigation