Skip to main content
Log in

Modeling Chirp and Phase Inversion in Wavelength Converters based on Symmetrical MZI-SOAs for use in All-Optical Networks

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

All-optical wavelength conversion based on multi-section semiconductor optical amplifiers (SOAs) in a symmetrical Mach-Zehnder interferometer (SMZI) is modeled for use in optical networks. It incorporates an enhanced SOA model that is implemented using the time domain transfer matrix approach and hence the overall numerical model determines simultaneously the wavelength and gain parameters for the wavelength converter. The overall model accurately predicts the optimal conditions for the SMZI arrangement in order to achieve the best results for the chirp, the phase inversion and the converted probe signal power. It is also demonstrated that large chirp and mismatch of the phase inversion reduces the eye opening ratio (EOR) which can seriously affect the performance of the wavelength converter to be used as a sub-system component in all-optical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Olsson, et al., WDM to OTDM multiplexing using an Ultrafast all-optical wavelength converter, IEEE Photonics Technol. Letters, vol. 13,no. 9, (2001), pp. 1005-1007.

    Google Scholar 

  2. X. Hou, et al., Design of wavelength-convertible optical switches for the all-optical next-generation Internet, Conf. Proc. IEEE Workshop on High Performance Switching and Routing (Dallas, USA, 2001), pp. 97-101.

  3. R. Sato, et al., Polarization insensitive SOA-PLC hybrid integrated Michelson interferometeric wavelength converter and its application to DWDM networks, IEICE Transaction on Electron, vol. E84-C,no. 5, (2001), pp. 571-578.

    Google Scholar 

  4. M. Listanti, R. Sabella, Wavelength conversion in WDM optical networks: Strategies and algorithms for limiting the number of converters in the optical cross-connects, Photonic Network Communications, vol. 2,no. 4, (2000), pp. 335-348.

    Google Scholar 

  5. B. Mukherjee, WDM Optical communication networks: Progress and challenges, IEEE Journal on Selected areas in Communications, vol. 18,no. 10, (Nov. 2000), pp. 1810-1824.

    Google Scholar 

  6. P. Polishuk, DWDM system components, Fiber and Integrated Optics, vol. 18,no. 3, (1999), pp. 149-153.

    Google Scholar 

  7. C. Joergensen, et al., Optical wavelength converters-techniques and systems aspects, Proc of SPIE, vol. 2692, (1996), pp. 1-11.

    Google Scholar 

  8. R. Sato, et al., Demonstration of packet-by-packet wavelength conversion from FP-LD light to ITU-T grid wavelengths, IEEE Photonics Technology Letters, vol. 13,no. 6, (June 2001), pp. 612-614.

    Google Scholar 

  9. T. K. Nayak, K. N. Sivarajan, A new approach to dimensioning optical networks, IEEE Journal of Selected Areas in Communications, vol. 20,no. 1, (Jan. 2002), pp. 134-148.

    Google Scholar 

  10. H. Ishikawa, et al., Wavelength conversion technologies for photonic network systems, FUJITSU Scientific Technology Journal, vol. 35,no. 1, (1999), pp. 126-138.

    Google Scholar 

  11. S. J. B. Yoo, Wavelength conversion technologies for WDM applications, Journal of Lightwave Technology, vol. 14,no. 6, (Sept. 1996), pp. 955-966.

    Google Scholar 

  12. J. M. H. Elmirghani, All-optical wavelength conversion: Technologies and applications in DWDM networks, IEEE Communication Magazine, vol. 38,no. 3, (March 2001), pp. 86-92.

    Google Scholar 

  13. H. Lee, et al., Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOAs, IEEE Journal of Quantum Electronics, vol. 35,no. 8, (Aug. 1999), pp. 1213-1219.

    Google Scholar 

  14. T. Durhuus, et al., All-optical wavelength conversion by semiconductor optical amplifiers, Journal of Lightwave Technology, IEEE/OSA Journal, vol. 14,no. 6, (June 1996), pp. 942-953.

    Google Scholar 

  15. S. Nakamura, et al., 168-Gb/s All-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch, IEEE Photonics Technology Letters, vol. 13,no. 10, (2001), pp. 1091-1093.

    Google Scholar 

  16. M. Asghari, et al., Wavelength conversion using semiconductor optical amplifiers, Journal of Lightwave Technology, IEEE/OSA Journal, vol. 15,no. 7, (July 1997), pp. 1181-1190.

    Google Scholar 

  17. M.-H. Lee, et al., All optical signal regeneration in cascaded Mach-Zehnder interferometer wavelength converter, IEE Proceedings on Optoelectronics, vol. 148,no. 4, (2001), pp. 189-194.

    Google Scholar 

  18. K. Obermann, et al., Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers, Journal of Lightwave Technology, IEEE/OSA Journal, vol. 16,no. 1, (Jan. 1998), pp. 78-85.

    Google Scholar 

  19. C. Gosset, G. H. Duan, Extinction ratio improvement and wavelength conversion based on four-wave mixing in a semiconductor optical amplifier, IEEE Photonics Technology Letters, vol. 13,no. 2, (2001), pp. 139-141.

    Google Scholar 

  20. S.-C. Cao, et al., Detailed excremental characterization of chirp properties of an SOA-MZI wavelength converter, Conf. Proc. OFC'01 (Optical Fiber Communication Conference and Exhibit, March 2001), vol. 2,no. WDD68, pp. 1-3.

    Google Scholar 

  21. S. Shin, S. K. Han, Probe signal dependence of XPM wavelength converters, Conf. Proc. CLEO (Pacific Rim, 1999), pp. 1034-1035.

  22. M. G. Davis, R. F O'Dowd, A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers, IEEE Journal of Quantum Electronics, vol. 30,no. 11, (Nov. 1994), pp. 2258-2466.

    Google Scholar 

  23. W. Shieh, A. E. Willner, Optimal conditions for high-speed all-optical SOA-based wavelength converter, IEEE Photonics Technology Letters, vol. 7,no. 11, (Nov. 1995), pp. 1273-1275.

    Google Scholar 

  24. S. Shimada, H. Ishio, Optical amplifiers and their applications, (John Wiley & Sons, NY, 1998).

    Google Scholar 

  25. A. E. Willner, W. Shieh, Optimal spectral and power parameters for all-optical wavelength shifting: Single stage, fanout, and cascadability, Journal of Lightwave Technology, vol. 13,no. 5, (May 1995), pp. 771-781.

    Google Scholar 

  26. T. Durhuus, et al., Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion, Journal of Lightwave Technology, IEEE/OSA Journal, vol. 10,no. 8, (Aug. 1992), pp. 1056-1065.

    Google Scholar 

  27. G. P. Agrawal, N. K. Dutta, Semiconductor Lasers, (Van Nostrand, New York, 1993).

    Google Scholar 

  28. J. Carrol, J. Whiteaway, D. Plumb, Distributed feedback Semiconductor lasers, (IEE SPIE Optical Engineering Press, London, 1998).

    Google Scholar 

  29. J. S. Perino, et al., fiber transmission of 10Gbit/s signals following wavelength conversion using a travelling-wave semiconductor optical amplifier, IEE Electronics Letters, vol. 30,no. 3, (1994), pp. 256-257.

    Google Scholar 

  30. V. A. Djalali, et al., Theoretical and excremental chirp measurement in a semiconductor optical amplifier, Conf. Proc. CLEO'99 (Optical Society America, Washington, DC, USA, 1999), pp. 310-311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamro, M.Y., Senior, J.M., Leeson, M.S. et al. Modeling Chirp and Phase Inversion in Wavelength Converters based on Symmetrical MZI-SOAs for use in All-Optical Networks. Photonic Network Communications 5, 289–300 (2003). https://doi.org/10.1023/A:1023096304572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023096304572

Navigation