Skip to main content
Log in

Relative Phase Change During Quantum Operations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Quantum operations represented by completely positive maps encompass many physical processes and have been very powerful in describing quantum computation and information processing tasks. We introduce the notion of relative phase change for a quantum system undergoing a quantum operation. We find that the relative phase shift of a system not only depends on the initial state of the system, but also depends on the initial state of an ancilla with which it might have interacted in the past. The relative phase change during a sequence of quantum operations is shown to be non-additive in nature. This property can attribute a “memory” to a quantum channel. Also the notion of relative phase shift helps us to define what we call “in-phase quantum channels.” We will present the relative phase shifts for a qubit undergoing both a depolarizing channel and complete randomization, and discuss their implications.

PACS: 03.65.Vf; 03.67.-a; 03.65.Yz

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. R. P. Feynman, R. B. Leighton, and M. Sands. Feynman Lectures on Physics, Vol. III (Addison-Wesley, Reading, Massachusetts 1965).

    Google Scholar 

  2. S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247(1956).

    Google Scholar 

  3. M. V. Berry, Proc. R. Soc. London Ser. A 392, 45(1984).

    Google Scholar 

  4. Y. Aharonov and J. S. Anandan, Phys. Rev. Lett. 58, 1593(1987).

    Google Scholar 

  5. J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339(1988).

    Google Scholar 

  6. I. J. R. Aitchison and K. Wanelik, Proc. R. Soc. London Ser. A 439, 25(1992).

    Google Scholar 

  7. N. Mukunda and R. Simon, Ann. Phys. (N.Y.) 228, 205(1993).

    Google Scholar 

  8. A. K. Pati, Phys. Rev. A 52, 2576(1995).

    Google Scholar 

  9. A. K. Pati, J. Phys. A 28, 2087(1995).

    Google Scholar 

  10. A. Uhlmann, Rep. Math. Phys. 24, 229(1986).

    Google Scholar 

  11. E. Sjoqvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson, D. K. L. Oi, and V. Vedral, Phys. Rev. Lett. 85, 2845(2000).

    Google Scholar 

  12. M. Ericsson, A. K. Pati, E. Sjoqvist, J. Brannlund, and D. K. L. Oi, Quant. Ph. 0206063 (2002).

  13. P. B. Slater, Quant. Ph. 0112054 (2001).

  14. P. B. Slater, Lett. Math. Phys. 60(2), 123(2002).

    Google Scholar 

  15. J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, Nature 403, 869(1999).

    Google Scholar 

  16. A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J. A. Jones, D. K. L. Oi, and V. Vedral, J. Mod. Opt. 47, 2501(2000).

    Google Scholar 

  17. G. Falci, R. Fazio, G. M. Palma, J. Siewert, V. Vedral, Nature 407, 355(2000).

    Google Scholar 

  18. A. Nazir, T. P. Spiller, and W. J. Munro, Phys. Rev. A 65, 042303(2002).

    Google Scholar 

  19. I. Fuentes-Guridi, S. Bose, and V. Vedral, Phys. Rev. Lett. 85, 5018(2000).

    Google Scholar 

  20. B. C. Sanders, H. de Guise, S. D. Bartlett, and W. Zhang, Phys. Rev. Lett. 86, 369(2001).

    Google Scholar 

  21. R. Bhandari, Phys. Rev. Lett. 89, 268901(2002).

    Google Scholar 

  22. J. S. Anandan, E. Sjoqvist, A. K. Pati, A. Ekert, M. Ericsson, D. K. L. Oi, and V. Vedral, Phys. Rev. Lett. 89, 268902(2002).

    Google Scholar 

  23. M. Ericsson, E. Sjoqvist, J. Brannlund, D. K. L. Oi, and A. K. Pati, Phys. Rev. A 67, 020101(R)(2003).

    Google Scholar 

  24. J. G. P. Faria, A. F. R. T. Piza, and M. C. Nemes, Quant. Ph. 0205146 (2002).

  25. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

  26. K. Kraus, States, Effects and Operations (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  27. J. Preskill, Lecture notes, www.theory.caltech.edu/people/preskill/ph229.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pati, A.K. Relative Phase Change During Quantum Operations. Quantum Information Processing 2, 1–14 (2003). https://doi.org/10.1023/A:1025847609264

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025847609264

Navigation