Skip to main content
Log in

Single Step Tableaux for Modal Logics

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Single Step Tableaux (SST) are the basis of a calculus for modal logics that combines different features of sequent and prefixed tableaux into a simple, modular, strongly analytic, and effective calculus for a wide range of modal logics.

The paper presents a number of the computational results about SST (confluence, decidability, space complexity, modularity, etc.) and compares SST with other formalisms such as translation methods, modal resolution, and Gentzen-type tableaux. For instance, it discusses the feasibility and infeasibility of deriving decision procedures for SST and translation-based methods by replacing loop checking techniques with simpler termination checks.

The complexity of searching for validity and logical consequence with SST and other methods is discussed. Minimal conditions on SST search strategies are proven to yield Pspace (and NPtime for S5 and KD45) decision procedures. The paper also presents the methodology underlying the construction of the correctness and completeness proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckert, B. and Goré, R.: Free variable tableaux for propositional modal logics, in [17], 1997, pp. 91-108.

  2. Buva?, S., Buva?, V. and Mason, I.: Metamathematics of contexts, Fundamenta Inform. 23(3) (1995), 263-301.

    Google Scholar 

  3. Catach, L.: TABLEAUX, a general theorem prover for modal logics, J. Automated Reasoning 7 (1991), 489-510.

    Google Scholar 

  4. Cerrito, S. and Cialdea Mayerm M.: Hintikka multiplicities in matrix decision methods for some propositional modal logics, in [17], 1997, pp. 138-152.

  5. Cerrito, S. and Cialdea Mayer, M.: A polynomial translation of S4 into T and contraction-free tableaux for S4, J. Interest Group in Pure Appl. Logic 5(2) (1997), 287-300.

    Google Scholar 

  6. D'Agostino, G., Montanari, A. and Policriti, A.: A set-theoretic translation method for polymodal logics, J. Automated Reasoning 15 (1995), 317-337.

    Google Scholar 

  7. De Giacomo, G. and Massacci, F.: Tableaux and algorithms for propositional dynamic logic with converse, in [34], 1996, pp. 613-628.

  8. Demri, S.: Uniform and non uniform strategies for tableaux calculi for modal logics, J. Appl. Non-Classical Logics 5(1) (1995), 77-96.

    Google Scholar 

  9. Enjalbert, P. and Fariñas del Cerro, L.: Modal resolution in clausal form, Theoret. Comput. Sci. 65 (1989), 1-33.

    Google Scholar 

  10. Fagin, R., Halpern, J., Moses, Y. and Vardi, M.: Reasoning about Knowledge, The MIT Press, 1995.

  11. Fischer, N. and Ladner, R.: Propositional dynamic logic of regular programs, J. Comput. System Sci. 18 (1979), 194-211.

    Google Scholar 

  12. Fitch, F.: Tree proofs in modal logic, J. Symbolic Logic 31 (1966).

  13. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics, Reidel, 1983.

  14. Fitting, M.: First-order modal tableaux, J. Automated Reasoning 4 (1988), 191-213.

    Google Scholar 

  15. Fitting, M.: Basic modal logic, in D. Gabbay, C. Hogger, and J. Robinson (eds), Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 1, Oxford Univ. Press, 1993, pp. 365-448.

  16. Gabbay, D.: Labelled deductive systems, Technical Report MPI-I-94-223, Max Plank Institute für Informatik (MPII), Saarbrüken, Germany, 1994. To appear as a book by Oxford Univ. Press.

    Google Scholar 

  17. Galmiche, D. (ed.): Proc. of the Internat. Conf. on Analytic Tableaux and Related Methods (TABLEAUX-97), LNAI 1227, Springer-Verlag, 1997.

  18. Gent, I.: Theory matrices (for modal logics) using alphabetical monotonicity, Studia Logica 52 (1993), 233-257.

    Google Scholar 

  19. Giunchiglia, F. and Sebastiani, R.: Building decision procedures for modal logics from propositional decision procedures-the case study of modal K, in M. McRobbie and J. Slaney (eds.), Proc. of the 13th Internat. Conf. on Automated Deduction (CADE-96), LNAI 1104, Springer-Verlag, 1996, pp. 583-597.

  20. Goré, R.: Tableaux method for modal and temporal logics, Technical Report TR-ARP-15-5, Australian Nat. University, 1995. To appear as chapter on the Handbook of Tableau Methods by Kluwer.

  21. Halpern, J. and Fagin, R.: Modelling knowledge and action in distributed systems, Distrib. Comput. 3(4) (1989), 159-177.

    Google Scholar 

  22. Halpern, J. and Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief, Artif. Intell. 54 (1992), 319-379.

    Google Scholar 

  23. Heuerding, A., Seyfried, M. and Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical logics, in Proc. of the 5th Workshop on Theorem Proving with Analytic Tableaux and Related Methods (TABLEAUX-96), LNAI 1071, Springer-Verlag, 1996, pp. 210-225.

  24. Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems, J. ACM 27(4) (1980), 797-821.

    Google Scholar 

  25. Hughes, G. and Cresswell, M.: An Introduction to Modal Logic, Methuen, 1968.

  26. Hustadt, U. and Schmidt, R.: On evaluating decision procedure for modal logic, in M. Pollack (ed.), Proc. of the 15th Internat. Joint Conf. on Artificial Intelligence (IJCAI-97), 1997, pp. 202-207.

  27. Johnson, D.: A catalog of complexity classes, in J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Elsevier Science Publishers (North-Holland), Amsterdam, 1990, pp. 67-162.

    Google Scholar 

  28. Johnson, D. and Garey, M.: Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979.

    Google Scholar 

  29. Kripke, S.: Semantical analysis of modal logic I: normal propositional calculi, Z. Math. Logik Grundlag. Math. 9 (1963), 67-96.

    Google Scholar 

  30. Ladner, R.: The computational complexity of provability in systems of modal propositional logic, SIAM J. Comput. 6(3) (1977), 467-480.

    Google Scholar 

  31. Marek, W., Schwarz, S. and Truszczynski, M.: Modal nonmonotonic logics: Ranges, characterization, computation, J. ACM 40(4) (1993), 963-990.

    Google Scholar 

  32. Massacci, F.: Strongly analytic tableaux for normal modal logics, in A. Bundy (ed.), Proc. of the 12th Internat. Conf. on Automated Deduction (CADE-94), LNAI 814, Springer-Verlag, 1994, pp. 723-737.

  33. Massacci, F.: Contextual resoning is NP-complete, in W. Clancey and D. Weld (eds.), Proc. Of the Nat. (US) Conf. on Artificial Intelligence (AAAI-96), AAAI/MIT Press, 1996, pp. 621-626.

  34. McRobbie, M. and Slaney, J. (eds.): Proc. of the 13th Internat. Conf. on Automated Deduction (CADE-96), LNAI 1104, Springer Verlag, 1996.

  35. Mints, G.: Gentzen-type systems and resolution rules, in Internat. Conf. on Computer Logic (COLOG), LNCS 417, Springer-Verlag, 1988, pp. 198-231.

  36. Nonnengart, A.: First-order modal logic theorem proving and functional simulation, in Proc. of the 13th Internat. Joint Conf. on Artificial Intelligence (IJCAI-93), Morgan Kaufmann, 1993, pp. 80-85.

  37. Ohlbach, H.: A resolution calculus for modal logic, in Proc. of the 9th Internat. Conf. on Automated Deduction (CADE-88), LNCS 310, Springer-Verlag, 1988, pp. 500-516.

  38. Ohlbach, H.: Semantic-based translation methods for modal logics, J. Logic Comput. 1(5) (1991), 691-746.

    Google Scholar 

  39. Ohlbach, H.: Translation methods for non-classical logics-an overview, J. Interest Group in Pure Appl. Logic 1(1) (1993), 69-89.

    Google Scholar 

  40. Ohnishi, M. and Matsumoto, K.: Gentzen method in modal calculi, Osaka Math. J. 9 (1957), 113-130.

    Google Scholar 

  41. Ohnishi, M. and Matsumoto, K.: Gentzen method in modal calculi, II, Osaka Math. J. 11 (1959), 115-120.

    Google Scholar 

  42. Russo, A.: Generalising propositional modal logic using labelled deductive systems, in Proceedings of the Internat. Workshop on Frontiers of Combining Systems (FroCoS-96), LNAI, Springer-Verlag, 1996.

  43. Schmitt, S. and Kreitz, C.: Converting non-classical matrix proofs into sequent-style systems, in [34], 1996, pp. 418-432.

  44. Schmidt, R.: Resolution is a decision procedure for many propositional modal logics, in M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev (eds.), Advances in Modal Logic, Vol. 1, Lecture Notes 87, CSLI Publications, Stanford, pp. 189-208.

  45. Schwarz, G.: Gentzen style systems for K45 and KD45, in A. Meyer and M. Taitslin (eds.), Logic at Botik '89, Symposium on Logical Foundations of Computer Science, LNAI 363, Springer-Verlag, 1989.

  46. Smullyan, R.: First Order Logic, Springer-Verlag, 1968. Republished by Dover, New York, in 1995.

  47. Wallen, L.: Automated Deduction in Nonclassical Logics, The MIT Press, 1990.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massacci, F. Single Step Tableaux for Modal Logics. Journal of Automated Reasoning 24, 319–364 (2000). https://doi.org/10.1023/A:1006155811656

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006155811656

Navigation