Skip to main content
Log in

Fuzzy Logic for Biological and Agricultural Systems

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Fuzzy logic is a powerful concept for handling non-linear, time-varying, adaptive systems. It permits the use of linguistic values of variables and imprecise relationships for modeling system behavior. The paper presents an overview of fuzzy logic modeling techniques, its applications to biological and agricultural systems and an example showing the steps of constructing a fuzzy logic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balakrishnan, S. & Santhakumar, S. (1996). Fuzzy modeling considerations in an aero gasturbine engine start cycle. Fuzzy Sets and Systems 78(1): 1–4.

    Google Scholar 

  • Barbera, E. & Albertos, P. (1994). Fuzzy-logic modeling of social-behavior. Cybernetics and Systems 25(2): 343–358.

    Google Scholar 

  • Beasley, D., Bull, D. & Martin, R. (1993). An overview of genetic algorithms: Part 1, fundamentals. University Computing 15(2): 58–69.

    Google Scholar 

  • Bezdek, J. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press.

    Google Scholar 

  • Bezdek, J. (1992). Fuzzy Models for Pattern Recognition: Methods that Search for Structures in Data. New York: IEEE Press.

    Google Scholar 

  • Booker, L., Goldberg, D. & Holland, J. (1989). Classifier systems and genetic algorithms. Artificial Intelligence 40: 235–282.

    Google Scholar 

  • Center, B. & Verma, B. (1992). A fuzzy photosynthesis model for tomato. Technical Report No. 953558. St. Joseph, MI: ASAE.

    Google Scholar 

  • Dash, P., Liew, A., Rahman, S. & Dash, S. (1995). Fuzzy and neuro-fuzzy computing models for electric-load forecasting. Engineering Applications of Artificial Intelligence 8(4): 423–433.

    Google Scholar 

  • Dohnal, M. (1985). Fuzzy bioengineering models. Biotechnology and Bioengineering 27: 1146–1151.

    Google Scholar 

  • Edan, Y., Grinspan, P., Maltz, E. & Kahn, H. (1992). Fuzzy logic for applications in the dairy industry. Technical Report No. 923600. St. Joseph, MI: ASAE.

    Google Scholar 

  • Fedrizzi, M., Fedrizzi, M. & Ostasiewicz, W. (1993). Towards fuzzy modeling in economics. Fuzzy Sets and Systems 54(3): 259–268.

    Google Scholar 

  • Flanagan, M. (1989). On the application of approximate reasoning to control of the activated sludge process. Proceedings of the Joint Automatic Control Conference, Vol. 31, pp. 13–22.

    Google Scholar 

  • Gardin, F., Power, R. & Martinelli, E. (1995). Liquidity management with fuzzy qualitative constraints. Decision Support Systems 15(2): 147–156.

    Google Scholar 

  • Goldberg, D. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Menlo Park, CA: Addison-Wesley.

    Google Scholar 

  • Gustafson, D. & Kessel, W. (1984). Fuzzy clustering with a fuzzy covariance matrix. Proceedings IEEE CDC, Vol. 12, pp. 1–25.

    Google Scholar 

  • Hwang, H. & Woo, K. (1995). Linguistic fuzzy model identification. IEEE Proceedings-Control Theory and Applications 142(6): 537–544.

    Google Scholar 

  • Jang, J. (1993). ANFIS – adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23(3): 665–685.

    Google Scholar 

  • Jang, J. & Sun, C. (1995). Neuro-fuzzy modeling and control. Proceedings of the IEEE 83(3): 378–406.

    Google Scholar 

  • Karr, C. (1991a). Applying genetics to fuzzy logic. AI Expert March: 38–43.

  • Karr, C. (1991b). Genetic algorithms for fuzzy controllers. AI Expert February: 26–33.

  • Karr, C. & Gentry, E. (1993). Fuzzy control of ph using genetic algorithms. IEEE Transactions on Fuzzy Systems 1(1): 46–53.

    Google Scholar 

  • Keller, J. & Hunt, D. (1985). Incorporating fuzzy membership functions into the perception algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI7(6): 693–699.

    Google Scholar 

  • Keller, J. & Tahani, H. (1992). Implementation of conjunctive and disjunctive fuzzy logic rules with neural networks. International Journal of Approximate Reasoning 6: 221–240.

    Google Scholar 

  • Konstantinov, K. & Yoshida, T. (1989). Physiological state control of fermentation processes. Biotechnology and Bioengineering 33: 1145–1156.

    Google Scholar 

  • Konstantinov, K. & Yoshida, T. (1990a). An expert approach for control of fermentation processes as variable structure plants. Journal of Fermentation and Bioengineering 70(1): 48–57.

    Google Scholar 

  • Konstantinov, K. & Yoshida, T. (1990b). Online monitoring of representative structural variables in fedbatch cultivation of recombinant escherichia coli for phenylaline production. Journal of Fermentation and Bioengineering 70(6): 420–426.

    Google Scholar 

  • Konstantinov, K. & Yoshida, T. (1992). Knowledge-based control of fermentation processes. Biotechnology and Bioengineering 39: 479–486.

    Google Scholar 

  • Kosko, B. (1992). Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Kosko, B. (1993). Fuzzy Thinking: the New Science of Fuzzy Logic. New York: Hyperion.

    Google Scholar 

  • Kruse, R., Gebhardt, J. & Klawonn, F. (1994). Foundations of Fuzzy Systems. Chichester: John Wiley & Sons, Inc..

    Google Scholar 

  • Lasek, M. (1992). Hierarchical structures of fuzzy ratings in the analysis of strategic goals of enterprises. Fuzzy Sets and Systems 50(2): 127–134.

    Google Scholar 

  • Lee, C. (1990). Fuzzy logic in control systems: Fuzzy logic controller-part i. IEEE Transactions on Systems, Man, and Cybernetics 20(2): 404–417.

    Google Scholar 

  • Linko, P. (1988). Uncertainties, fuzzy reasoning, and expert systems in bioengineering. Annals of the New York Academy of Sciences 542: 83–101.

    Google Scholar 

  • Mamdani, E. & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man Machine Studies 7(1): 1–13.

    Google Scholar 

  • Nakamishi, S., Takagi, T. & Kurosania, M. (1993). Expert systems of beef grading by fuzzy inference and neural networks. Proceedings of the 3rd International Fuzzy Association World Congress, pp. 360–375.

  • Norwich, A. & Turksen, I. (1984). A model for the measurement of membership and the consequences of its empirical implementation. Fuzzy Sets and Systems 12: 1–25.

    Google Scholar 

  • Ntuen, C. & Chestnut, J. (1995). An expert-system for selecting manufacturing workers for training. Expert Systems with Applications 9(3): 309–332.

    Google Scholar 

  • Park, D., Kandel, A. & Langholz, G. (1994). Genetic-based new fuzzy reasoning models with application to fuzzy control. IEEE Transactions on Systems, Man, and Cybernetics 24(1): 39–47.

    Google Scholar 

  • Procyk, T. & Mamdani, E. (1979). A linguistic self-organizing process controller. Automatica 15(1): 15–30.

    Google Scholar 

  • Qian, Y. & Tessier, P. (1995). Application of fuzzy relational modeling to industrial-product quality-control. Chemical Engineering & Technology 18(5): 330–336.

    Google Scholar 

  • Schmoldt, D. (1991). Simulation of plant physiological processes using fuzzy variables. AI Applications 5(4): 3–16.

    Google Scholar 

  • Sugeno, M. & Yasukawa, T. (1993). A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems 1(1): 7–31.

    Google Scholar 

  • Takagi, H. & Hayashi, I. (1991). NN-driven fuzzy reasoning. International Journal of Approximate Reasoning 5(3): 191–212.

    Google Scholar 

  • Tansheit, R. & Scharf, E. (1988). Experiments with the use of a rule-based self-organizing controller for robotics applications. Fuzzy Sets and Systems 26: 195–216.

    Google Scholar 

  • Thangaradivehu, S. and Colvin, T. (1993). Trafficability determination using fuzzy set theory. Transactions of the ASAE 34(5): 2272–2278.

    Google Scholar 

  • Tog (1993). TILShell User Manual, 3.0.0 edn.

  • Turksen, I. (1991). Measurement of membership functions and their acquisition. Fuzzy Sets and Systems 40: 5–38.

    Google Scholar 

  • Turksen, I., Tanaka, H. & Watada, J. (1993). Special issue on expert decision-support systems – foreword. Fuzzy Sets and Systems 58(l): 1–2.

    Google Scholar 

  • Valenzuela, M. (1992). The fuzzy classifier system: Motivations and first results. Parallel Processing from Nature 1(1): 338–342.

    Google Scholar 

  • Verma, B. (1995). Application of fuzzy logic in postharvest quality decisions. Proceedings of the National Seminar on Postharvest Technology of Fruits. Bangalore, India: University of Agricultural Sciences.

    Google Scholar 

  • Wiggins, R. (1992). Fuzzy control: A genetic approach. AI Expert May: 28–35.

  • Williams, T. (1994). New tools make fuzzy/neural more than an academic amusement. Computer Design July 14: 69–84.

    Google Scholar 

  • Yager, R. & Filev, D. (1994). Essentials of Fuzzy Modeling and Control. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Yager, R., Goldstein, L. & Mendels, E. (1994). Fuzmar – an approach to aggregating market research data-based on fuzzy-reasoning. Fuzzy Sets and Systems 68(1): 1–11.

    Google Scholar 

  • Yamakawa, T. (1992). A fuzzy logic controller. Journal of Biotechnology 24: 1–32.

    Google Scholar 

  • Yang, M. (1993). A survey of fuzzy clustering. Mathematical and Computer Modelling 18(11): 1–16.

    Google Scholar 

  • Yoshinari, Y., Pedrycz, W. & Hirota, K. (1996). Construction of fuzzy models through clusteringtechniques. Fuzzy Sets and Systems 78(l): 1–4.

    Google Scholar 

  • Zadeh, L. (1965). Fuzzy sets. Information and Control 8(1): 338–353.

    Google Scholar 

  • Zadeh, L. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics SMC3: 28–44.

    Google Scholar 

  • Zadeh, L. (1975a). The concept of a linguistic variable and its application to approximate reasoning: part 1. Information Sciences 8(1): 199–249.

    Google Scholar 

  • Zadeh, L. (1975b). The concept of a linguistic variable and its application to approximate reasoning: part 2. Information Sciences 8(1): 301–357.

    Google Scholar 

  • Zadeh, L. (1976). The concept of a linguistic variable and its application to approximate reasoning: part 3. Information Sciences 9(1): 43–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahm P. Verma*.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Center, B., Verma*, B.P. Fuzzy Logic for Biological and Agricultural Systems. Artificial Intelligence Review 12, 213–225 (1998). https://doi.org/10.1023/A:1006577431288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006577431288

Navigation