Abstract
Hydrogen bonds are the most specific, and therefore predictable of the intermolecular interactions involved in ligand–protein binding. Given the structure of a molecule, it is possible to estimate the positions at which complementary hydrogen-bonding atoms could be found. Crystal-survey data are used in the design of a program, HBMAP, that generates a hydrogen-bond map for any given ligand, which contains all the feasible positions at which a complementary atom could be found. On superposition of ligands, the overlapping regions of their maps represent positions of receptor atoms to which each molecule can bind. The certainty of these positions is increased by the incorporation of a larger number and diversity of molecules. In this work, superposition is achieved using the program HBMATCH, which uses simulated annealing to generate the correspondence between points from the hydrogen-bonding maps of the two molecules. Equivalent matches are distinguished on the basis of their steric similarity. The strategy is tested on a number of ligands for which ligand–protein complexes have been solved crystallographically, which allows validation of the techniques. The receptor atom positions of thermolysin are successfully predicted when the correct superposition is obtained.
Similar content being viewed by others
References
Manallack, D.T., Drug Discov. Today, 1 (1996) 231.
Finn, P.W., Drug Discov. Today, 1 (1996) 363.
Böhm, H.-J., Curr. Opin. Biotechnol., 7 (1996) 433.
Danziger, D.J. and Dean, P.M., J. Theor. Biol., 116 (1985) 215.
Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Design, 4 (1990) 295.
Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Design, 4 (1990) 317.
Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Design, 5 (1991) 107.
Masek, B.B., Marchant, A. and Matthew, J.B., J. Med. Chem., 36 (1993) 1230.
Masek, B.B., Marchant, A. and Matthew, J.B., Proteins, 17 (1993) 193.
Perkins, T.D.J., Mills, J.E.J. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 479.
Chau, P.-L. and Dean, P.M., J. Mol. Graph., 5 (1987) 97.
Apaya, R.P., Lucchese, B., Price, S.L. and Vinter, J.G., J. Comput.-Aided Mol. Design, 9 (1995) 33.
Kato, Y., Inoue, A., Yamada, M., Tomioka, N. and Itai, A., J. Comput.-Aided Mol. Design, 6 (1992) 475.
Martin, Y.C., Bures, M.G., Danaher, E.A., DeLazzer, J., Lico, I. and Pavlik, P.A., J. Comput.-Aided Mol. Design, 7 (1993) 83.
Barnum, D., Greene, J., Smellie, A. and Sprague, P., J. Chem. Inf. Comput. Sci., 36 (1996) 563.
Jones, G., Willett, P. and Glen, R.C., J. Comput.-Aided Mol. Design, 9 (1995) 532.
Klebe, G., Mietzner, T. and Weber, F., J. Comput.-Aided Mol. Design, 8 (1994) 751.
Prendergast, K., Adams, K., Greenlee, W.J., Nachbar, R.B., Patchett, A.A. and Underwood, D.J., J. Comput.-Aided Mol. Design, 8 (1994) 491.
Good, A.C., In Dean, P.M. (Ed.) Molecular Similarity in Drug Design, Blackie Academic and Professional, London, U.K., 1995, pp. 24–56.
Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.
Klebe, G., J. Mol. Biol., 237 (1994) 212.
Mills, J.E.J. and Dean, P.M., J. Comput.-Aided Mol. Design, 10 (1996) 607.
Danziger, D.J. and Dean, P.M., Proc. R. Soc. London, B236 (1989) 101.
Danziger, D.J. and Dean, P.M., Proc. R. Soc. London, B236 (1989) 115.
Levitt, M. and Perutz, M.F., J. Mol. Biol., 201 (1988) 751.
Fong, T.M., Cascieri, M.A., Yu, H., Bansal, A., Swain, C. and Strader, C.D., Nature, 365 (1993) 350.
Mitchell, J.B.O., Nandi, C.L., McDonald, I.K., Thornton, J.M. and Price, S.L., J. Mol. Biol., 239 (1994) 315.
Dougherty, D.A., Science, 271 (1996) 163.
McLachlan, A.D., J. Mol. Biol., 128 (1979) 49.
Szu, H. and Hartley, P., Phys. Lett., A122 (1987) 157.
Roderick, S.L., Fournie-Zaluski, M.C., Roques, B.P. and Matthews, B.W., Biochemistry, 28 (1989) 1493.
Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.
Walters, D.E. and Hinds, R.M., J. Med. Chem., 37 (1994) 2527.
Vedani, A., Zbinden, P., Snyder, J.P. and Greenidge, P.A., J. Am. Chem. Soc., 117 (1995) 4987.
Hahn, M., J. Med. Chem., 38 (1995) 2080.
Chau, P.-L. and Dean, P.M., J. Comput.-Aided Mol. Design, 8 (1994) 513.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mills, J., Perkins, T. & Dean, P. An automated method for predicting the positions of hydrogen-bonding atoms in binding sites. J Comput Aided Mol Des 11, 229–242 (1997). https://doi.org/10.1023/A:1007900527102
Issue Date:
DOI: https://doi.org/10.1023/A:1007900527102