Skip to main content
Log in

Comparative receptor mapping of serotoninergic 5-HT3 and 5-HT4 binding sites*

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The clinical use of currently available drugs acting at the5-HT4 receptor has been hampered by their lack of selectivityover 5-HT3 binding sites. For this reason, there is considerableinterest in the medicinal chemistry of these serotonin receptor subtypes, andsignificant effort has been made towards the discovery of potent and selectiveligands. Computer-aided conformational analysis was used to characterizeserotoninergic 5-HT3 and 5-HT4 receptorrecognition. On the basis of the generally accepted model of the5-HT3 antagonist pharmacophore, we have performed a receptormapping of this receptor binding site, following the active analog approach(AAA) defined by Marshall. The receptor excluded volume was calculated as theunion of the van der Waals density maps of nine active ligands(pKi ≥ 8.9), superimposed in pharmacophoric conformations.Six inactive analogs (pKi < 7.0) were subsequently used todefine the essential volume, which in its turn can be used to define theregions of steric intolerance of the 5-HT3 receptor. Five activeligands (pKi ≥ 9.3) at 5-HT4 receptors wereused to construct an antagonist pharmacophore for this receptor, and todetermine its excluded volume by superimposition of pharmacophoricconformations. The volume defined by the superimposition of five inactive5-HT4 receptor analogs that possess the pharmacophoric elements(pKi ≤ 6.6) did not exceed the excluded volume calculated forthis receptor. In this case, the inactivity may be due to the lack of positiveinteraction of the amino moiety with a hypothetical hydrophobic pocket, whichwould interact with the voluminous substituents of the basic nitrogen ofactive ligands. The difference between the excluded volumes of both receptorshas confirmed that the main difference is indeed in the basic moiety. Thus,the 5-HT3 receptor can only accommodate small substituents inthe position of the nitrogen atom, whereas the 5-HT4 receptorrequires more voluminous groups. Also, the basic nitrogen is located at ca.8.0 Å from the aromatic moiety in the 5-HT4 antagonistpharmacophore, whereas this distance is ca. 7.5 Å in the5-HT3 antagonist model. The comparative mapping of bothserotoninergic receptors has allowed us to confirm the three-componentpharmacophore accepted for the 5-HT3 receptor, as well as topropose a steric model for the 5-HT4 receptor binding site. Thisstudy offers structural insights to aid the design of new selective ligands,and the resulting models have received some support from the synthesis of twonew active and selective ligands: 24 (Ki(5-HT3)= 3.7 nM; Ki(5-HT4) > 1000 nM) and 25(Ki(5-HT4) = 13.7 nM;Ki(5-HT3) > 10 000 nM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Humphrey, P.P.A., In Langer, S.Z., Brunello, N., Racagni, G. and Mendlewicz, J. (Eds.), Serotonin Receptor Subtypes: Pharmacological Significance and Clinical Implications, Vol. 1, Karger, Basel, Switzerland, 1992, pp. 129–139.

    Google Scholar 

  2. Teitler, M., Med. Chem. Res., 3 (1993) 273.

    Google Scholar 

  3. Herndon, J.L. and Glennon, R.A., In Kozikowski, A.P. (Ed.), Drug Design for Neuroscience, Raven Press, New York, NY, U.S.A., 1993, pp. 167–212.

    Google Scholar 

  4. Saudou, F. and Hen, R., Med. Chem. Res., 4 (1994) 16.

    Google Scholar 

  5. Hoyer, D., Clarke, D.E., Fozard, J.R., Hartig, P.R., Martin, G.R., Mylecharane, E.J., Saxena, P.R. and Humphrey, P.P.A., Pharmacol. Rev., 46 (1994) 157.

    Google Scholar 

  6. Lucas, J.J. and Hen, R., Trends Pharmacol. Sci., 16 (1995) 246.

    Google Scholar 

  7. Derkach, V., Suprenant, A. and North, R.A., Nature, 339 (1989) 706.

    Google Scholar 

  8. Yakel, J.L., Shao, X.M. and Jackson, M.B., Brain Res., 533 (1990) 46.

    Google Scholar 

  9. Kilpatrick, G.J., Bunce, K.T. and Tyers, M.B., Med. Res. Rev., 10 (1990) 441.

    Google Scholar 

  10. King, F.D., Jones, B.J. and Sanger, G.J. (Eds.) 5-Hydroxytryptamine-3 Receptor Antagonists, CRC Press, Boca Raton, FL, U.S.A., 1994.

    Google Scholar 

  11. Ford, A.P.D.W. and Clarke, D.E., Med. Res. Rev., 13 (1993) 633.

    Google Scholar 

  12. Veyrat-Follet, C., Farinotti, R. and Palmer, J.L., Drugs, 53 (1997) 206.

    Google Scholar 

  13. Greenshaw, A.J. and Silverstone, P.H., Drugs, 53 (1997) 20.

    Google Scholar 

  14. Hegde, S.S., Moy, T.M., Perry, M.R., Loeb, M. and Eglen, R.M., J. Pharmacol. Exp. Ther., 271 (1994) 741.

    Google Scholar 

  15. Kaumann, A.J., Trends Pharmacol. Sci., 15 (1994) 451.

    Google Scholar 

  16. Candura, S.M., Messori, E., Franceschetti, G.P., D’Agostino, G., Vicini, D., Tagliani, M. and Tonini, M., Br. J. Pharmacol., 118 (1996) 1965.

    Google Scholar 

  17. Schmidt, A.W. and Peroutka, S.J., Mol. Pharmacol., 36 (1989) 505.

    Google Scholar 

  18. Hibert, M.F., Hoffmann, R., Miller, R.C. and Carr, A.A., J. Med. Chem., 33 (1990) 1594.

    Google Scholar 

  19. Rizzi, J.P., Nagel, A.A., Rosen, T., McLean, S. and Seeger, T., J. Med. Chem., 33 (1990) 2721.

    Google Scholar 

  20. Evans, S.M., Galdes, A. and Gall, M., Pharmacol. Biochem. Behav., 40 (1991) 1033.

    Google Scholar 

  21. Clark, R.D., Jahangir, A., Langston, J.A., Weinhardt, K.K., Miller, A.B., Leung, E., Bonhaus, D.W., Wong, E.H.F. and Eglen, R.M., Bioorg. Med. Chem. Lett., 4 (1994) 2481.

    Google Scholar 

  22. Langlois, M., Zhang, L., Yang, D., Brémont, B., Shen, S., Manara, L. and Croci, T., Bioorg. Med. Chem. Lett., 4 (1994) 1433.

    Google Scholar 

  23. Clark, R.D., Jahangir, A., Langston, J.A., Weinhardt, K.K., Miller, A.B., Leung, E. and Eglen, R.M., Bioorg. Med. Chem. Lett., 4 (1994) 2477.

    Google Scholar 

  24. Marshall, G.R., Barry, C.D., Bosshard, H.E., Dammkoehler, R.A. and Dunn, D.A., In Olson, E.C. and Christoffersen, R.E. (Eds.), Computer-Assisted Drug Design, ACS Symposium Series, Vol. 112, Washington, DC, U.S.A., 1979, pp. 205–226.

  25. Franke, R. (Ed.) Theoretical Drug Design Methods, Elsevier, Amsterdam, The Netherlands, 1984, pp. 330–352.

    Google Scholar 

  26. INSIGHT II, v. 95.0, Biosym Technologies, San Diego, CA, U.S.A.

  27. Kilpatrick, G.J., Jones, B.J. and Tyers, M.B., Nature, 330 (1987) 746.

    Google Scholar 

  28. Wong, D.T., Robertson, D.W. and Reid, L.R., Eur. J. Pharmacol., 166 (1989) 107.

    Google Scholar 

  29. Butler, A., Hill, J.M., Ireland, S.J., Jordan, C.C. and Tyers, M.B., Br. J. Pharmacol., 94 (1988) 397.

    Google Scholar 

  30. Waeber, C., Pinkus, L.M. and Palacios, J.M., Eur. J. Pharmacol., 181 (1990) 283.

    Google Scholar 

  31. Langlois, M., Soulier, J.L., Allainmat, M., Shen, S. and Gallais, C., Bioorg. Med. Chem. Lett., 3 (1993) 1555.

    Google Scholar 

  32. Kuroita, T., Marubayashi, N., Sano, M., Kanzaki, K., Inaba, K. and Kawakita, T., Chem. Pharm. Bull., 44 (1996) 2051.

    Google Scholar 

  33. Spark, M.J., Winkler, D.A. and Andrews, P.A., Int. J. Quant. Chem., Quant. Biol. Symp., 9 (1982) 321.

    Google Scholar 

  34. López-Rodríguez, M.L., Morcillo, M.J., Benhamú, B. and Riaguas, M.D., Bioorg. Med. Chem. Lett., 6 (1996) 1195.

    Google Scholar 

  35. Grossman, C.J., Kilpatrick, G.J. and Bunce, K.T., Br. J. Pharmacol., 109 (1993) 618.

    Google Scholar 

  36. Clark, R.D., Miller, A.B., Berger, J., Repke, D.B., Weinhardt, K.K., Kowalczyk, B.A., Eglen, R.M., Bonhaus, D.W., Lee, C.-H., Michel, A.D., Smith, W.L. and Wong, E.H.F., J. Med. Chem., 36 (1993) 2645.

    Google Scholar 

  37. Youssefyeh, R.D., Campbell, H.F., Klein, S., Airey, J.E., Darkes, P., Powers, M., Schnapper, M., Neuenschwander, K., Fitzpatrick, L.R., Pendley, C.E. and Martin, G.E., J. Med. Chem., 35 (1992) 895.

    Google Scholar 

  38. Youssefyeh, R.D., Campbell, H.F., Airey, J.E., Klein, S., Schnapper, M., Powers, M., Woodward, R., Rodríguez, W., Golec, S., Studt, W., Dodson, S.A., Fitzpatrick, L.R., Pendley, C.E. and Martin, G.E., J. Med. Chem., 35 (1992) 903.

    Google Scholar 

  39. Van Wijngaarden, I., Hamminga, D., Van Hes, R., Standaar, P.J., Tipker, J., Tulp, M.T.M., Mol, F., Olivier, B. and De Jonge, A., J. Med. Chem., 36 (1993) 3693.

    Google Scholar 

  40. Ito, H., Akuzawa, S., Tsutsumi, R., Kiso, T., Kamato, T., Nishida, A., Yamano, M. and Miyata, K., Neuropharmacology, 34 (1995) 631.

    Google Scholar 

  41. Langlois, M., Yang, D., Brémont, B. and Shen, S., Bioorg. Med. Chem. Lett., 5 (1995) 795.

    Google Scholar 

  42. Wyman, P.A., Gaster, L.M., King, F.D., Sutton, J.M., Ellis, E.S., Wardle, K.A. and Young, T.J., Bioorg. Med. Chem., 4 (1996) 255.

    Google Scholar 

  43. Eglen, R.M., Wong, E.H.F., Dumuis, A. and Bockaert, J., Trends Pharmacol. Sci., 16 (1995) 391.

    Google Scholar 

  44. Clark, R.D., Jahangir, A., Flippin, L.A., Langston, J.A., Leung, E., Bonhaus, D.W., Wong, E.H.F., Johnson, L.G. and Eglen, R.M., Bioorg. Med. Chem. Lett., 5 (1995) 2119.

    Google Scholar 

  45. Gaster, L.M., Joiner, G.F., King, F.D., Wyman, P.A., Sutton, J.M., Bingham, S., Ellis, E.S., Sanger, G.J. and Wardle, K.A., J. Med. Chem., 38 (1995) 4760.

    Google Scholar 

  46. Fancelli, D., Caccio, C., Fornaretto, M.G., McArthur, R., Severino, D., Vaghi, F. and Varasi, M., Bioorg. Med. Chem. Lett., 6 (1996) 263.

    Google Scholar 

  47. Yang, D., Brémont, B., Shen, S., Kefi, S. and Langlois, M., Eur. J. Med. Chem., 31 (1996) 231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Rodríguez, M.L., Morcillo, M.J., Benhamú, B. et al. Comparative receptor mapping of serotoninergic 5-HT3 and 5-HT4 binding sites*. J Comput Aided Mol Des 11, 589–599 (1997). https://doi.org/10.1023/A:1007908707650

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007908707650

Navigation