Skip to main content
Log in

Model-Based Localisation and Recognition of Road Vehicles

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Objects are often constrained to lie on a known plane. This paper concerns the pose determination and recognition of vehicles in traffic scenes, which under normal conditions stand on the ground-plane. The ground-plane constraint reduces the problem of localisation and recognition from 6 dof to 3 dof.

The ground-plane constraint significantly reduces the pose redundancy of 2D image and 3D model line matches. A form of the generalised Hough transform is used in conjuction with explicit probability-based voting models to find consistent matches and to identify the approximate poses. The algorithms are applied to images of several outdoor traffic scenes and successful results are obtained. The work reported in this paper illustrates the efficiency and robustness of context-based vision in a practical application of computer vision.

Multiple cameras may be used to overcome the limitations of a single camera. Data fusion in the proposed algorithms is shown to be simple and straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballard, D.H. 1981. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13: 111-122.

    Article  Google Scholar 

  • Bar-Shalom, Y. and Fortmann, T.E. 1988. Tracking and Data Association. Academic Press: Boston.

    Google Scholar 

  • Besl, P.J. and Jain, R.C. 1985. Three-dimensional object recognition. ACM Computing Surveys, 17:75-145.

    Article  Google Scholar 

  • Brisdon, K.S. 1990. Hypothesis verification using iconic matching. Ph.D. Thesis, University of Reading, England.

    Google Scholar 

  • Brooks, R.A. 1983. Model-based three-dimensional interpretations of two-dimensional images. IEEE Trans. Patt. Anal. Mach. Intell., 5:140-150.

    Google Scholar 

  • Chen, J.L., Stockman, G.C., and Rao, K. 1993. Recovering and tracking pose of curved 3D objects from 2D images. In Proc. of IEEE Comput. Vis. Patt. Rec., New York, pp. 233-239.

  • Chin, R.T. and Dyer, C.R. 1986. Model-based recognition in robot vision. ACM Computing Surveys, 18:67-108.

    Article  Google Scholar 

  • Dhome, M., et al. 1989. Determination of the attitude of 3-D objects from a single perspective view. IEEE Trans. Patt. Anal. Mach. Intell., 11:1265-1278.

    Article  Google Scholar 

  • Dhome, M., et al. 1993. Determination of the pose of an articulated object from a single perspective view. In Proc. of 4th British Machine Vision Conf., Surrey, England, pp. 95-104.

  • Du, L., Sullivan, G.D., and Baker, K.D. 1993. Quantitative analysis of the viewpoint consistency constraint in model-based vision. In Proc. of 4th Inter. Conf. Comput. Vis., Berlin, Germany, pp. 632- 639.

  • Dubuisson, M.P., Lakshmanan, S., and Jain, A.K. 1996. Vehicle segmentation and classification using deformable templates. IEEE Trans. Patt. Anal. Mach. Intell., 18:293-308.

    Article  Google Scholar 

  • Duda, R.O. and Hart, P.E. 1973. Pattern Classification and Scene Analysis. Wiley: New York.

    Google Scholar 

  • Fan, T.J., Medioni, G., and Nevatia, R. 1989. Recognizing 3-D objects using surface descriptions. IEEE Trans. Patt. Anal. Mach. Intell., 11:1140-1157.

    Article  Google Scholar 

  • Faugeras, O.D. 1993. Three-Dimensional Computer Vision. MIT Press: Boston, USA.

    Google Scholar 

  • Faugeras, O.D. and Hebert, M. 1986. The representation, recognition, and locating of 3-D objects. Int. J. Robotics Res., 5:27-52.

    Google Scholar 

  • Flynn, P.J. and Jain, A.K. 1991. BONSAI: 3-D object recognition using constrained search. IEEE Trans. Patt. Anal. Mach. Intell., 13:1066-1074.

    Article  Google Scholar 

  • Forsyth, D., et al. 1991. Invariant descriptors for 3-D object recognition and pose. IEEE Trans. Patt. Anal. Mach. Intell., 13:971-991.

    Article  Google Scholar 

  • Gaston, P.C. and Lozano-Perez, T. 1984. Tactile recognition and localization using object models: The case of polyhedra on a plane. IEEE Trans. Patt. Anal. Mach. Intell., 6:257-265.

    Google Scholar 

  • Gil, S., Milanese, R., and Pun, T. 1996. Combining multiple motion estimates for vehicle tracking. In Proc. 4th European Conf. Comput. Vision, Cambridge, England, pp. 307-320.

  • Grimson, W.E.L. 1991. The combinatorics of heuristic search termination for object recognition in cluttered environment. IEEE Trans. Patt. Anal. Mach. Intell., 13:920-935.

    Article  Google Scholar 

  • Grimson, W.E.L. and Lozano-Perez, T. 1984. Model-based recognition and localization from spare range or tactile data. Int. J. Robotics Res., 3:3-35.

    Google Scholar 

  • Grimson, W.E.L. and Lozano-Perez, T. 1987. Localizing overlapping parts by searching the interpretation tree. IEEE Trans. Patt. Anal. Mach. Intell., 9:469-482.

    Google Scholar 

  • Grimson, W.E.L. and Huttenlocher, D.P. 1990a. On the sensitivity of the Hough transform for object recognition. IEEE Trans. Patt. Anal. Mach. Intell., 12:255-274.

    Article  Google Scholar 

  • Grimson, W.E.L. and Huttenlocher, D.P. 1990b. On the sensitivity of geometric hashing. In Proc. of 3rd Inter. Conf. Comput. Vision, Osaka, Japan, pp. 334-338.

  • Horaud, R. 1987. New methods for matching 3-D objects with single perspective views. IEEE Trans. Patt. Anal. Mach. Intell., 9:401- 412.

    Google Scholar 

  • Hussain, Z., et al. 1990. Knowledge based image processing: Feature based methods. Esprit Project P2152 Report, R122/1.

  • Kak, A.C., et al. 1988. Knowledge-based robotics. Int. J. Prod. Res., 26:707-734.

    Google Scholar 

  • Kendall, M.G. and Buckland, W. R. 1982.A Dictionary of Statistical Terms, 4th Edition. Longman: London.

    Google Scholar 

  • Koller, D. 1993. Moving object recognition and classification based on recursive shape parameter estimation. In Proc. of 12th Israel Conf. AI, Comput. Vision Neural Net., Tel-Aviv, Israel, pp. 359- 368.

  • Koller, D., et al. 1993. Model-based object tracking in monocular image sequences of road traffic scenes. Int. J. Computer Vision, 10: 257-281.

    Google Scholar 

  • Koller, D., Weber, J., and Malik, J. 1994. Robust multiple car tracking with occlusion reasoning. In Proc. 3rd European Conf. Comput. Vision, Stockholm, Sweden, pp. 189-196.

  • Kollnig, H. and Nagel, H.-H. 1996. Matching object models to segments from an optical flow field. In Proc. 4th European Conf. Comput. Vision, Cambridge, England, pp. 388-399.

  • Kriegman, D.J. 1992. Computing stable poses of piecewise smooth objects. CVGIP-Image Understanding, 55:109-118.

    Google Scholar 

  • Linnainmaa, S., Harwood, D.A., and Davis, L.S. 1988. Pose determination of a three-dimensional object using triangle pairs. IEEE Trans. Patt. Anal. Mach. Intell., 10:634-647.

    Article  Google Scholar 

  • Liu, Y.C., Huang, T.S., and Faugeras, O.D. 1990. Determination of camera location from 2-D to 3-D line and point correspondences. IEEE Trans. Patt. Anal. Mach. Intell., 12:28-37.

    Article  Google Scholar 

  • Lowe, D.G. 1987a. Three-dimensional object recognition from two-dimensional images. Artificial Intell., 31:355-395.

    Article  Google Scholar 

  • Lowe, D.G. 1987b. The viewpoint consistency constraint. Int. J. Comput. Vision, 1:57-72.

    Google Scholar 

  • Michalopoulos, P.G. 1991. Vehicle detection video through image processing: The autoscope system. IEEE Trans. Vehicular Tech., 40:21-29.

    Article  Google Scholar 

  • Milton, J.S. and Arnold, J.C. 1990. Introduction to Probability and Statistics. McGraw-Hill: New York.

    Google Scholar 

  • Morris, C.N. and Rolph, J.E. 1981. Introduction to Data Analysis and Statistical Inference. Prentice-Hall: New Jersey.

    Google Scholar 

  • Mundy, J.L. and Heller, A.J. 1990. The evolution and testing of a model-based object recognition system. In Proc. of 3rd Inter. Conf. Comput. Vision, Osaka, Japan, pp. 268-282.

  • Navab, N. and Faugeras, O.D. 1993. Monocular pose determination from lines: Critical sets and maximum number of solutions. In Proc. IEEE Comput. Vision Pattern Recognition Conf., New York, USA, pp. 254-260.

  • Phong, T.Q., et al. 1995. Object pose from 2-D to 3-D point and line correspondences. Int. J. Comput. Vision, 15:225-243.

    Google Scholar 

  • Press, W.H., et al. 1986. Numerical Recipes. Cambridge University Press: Cambridge, England.

    Google Scholar 

  • Roberts, L.G. 1965. Machine perception of three-dimensional solids. In Optical and Electro-optical Information Processing, T. Tippet et al. (Eds.), MIT Press: Cambridge, MA.

    Google Scholar 

  • Silberberg, T.M., Davis, L.S., and Harwood, D.A. 1984. An iterative Hough procedure for three-dimensional object recognition. Pattern Recognition, 17:612-629.

    Article  Google Scholar 

  • Silberberg, T.M., Harwood, D.A., and Davis, L.S. 1986. Object recognition using oriented model points. Comput. Vis. Graph. Image Proc., 35:47-71.

    Google Scholar 

  • Stockman, G. 1987. Object recognition and localization via pose clustering. Comput. Vis. Graph. Image Proc., 40:361-387.

    Google Scholar 

  • Stockman, G., Kopstein, S., and Benett, S. 1982. Matching images to models for registration and object recognition via clustering. IEEE Trans. Patt. Anal. Mach. Intell., 3:229-241.

    Google Scholar 

  • Suetens, P., Fua, P., and Hanson, A.J. 1992. Computational strategies for object recognition. ACM Computing Surveys, 24:5-61.

    Article  Google Scholar 

  • Sullivan, G.D. 1992. Visual interpretation of known objects in constrained scenes. Phil. Trans. R. Soc. Lond. B, 337:361-370.

    Google Scholar 

  • Tan, T.N. 1993. Computing the PDF of the object orientation recovered from a single noisy 2D-3D line match. Esprit project P2152 research report, RU-03-WP.T3137-TNT-04.

  • Tan, T.N., Sullivan, G.D., and Baker, K.D. 1992. Linear algorithms for object pose estimation. In Proc. of 3rd British Machine Vision Conf., Leeds, England, pp. 600-609.

  • Tan, T.N., Sullivan, G.D., and Baker, K.D. 1993a. Recognising objects on the ground-plane. In Proc. of 4th British Machine Vision Conf., Surrey, England, pp. 85-94. Also in Special Issue on BMVC93, Image and Vision Computing, 12(3).

    Google Scholar 

  • Tan, T.N., Sullivan, G.D., and Baker, K.D. 1993b. On computing the perspective transformation matrix and camera parameters. In Proc. of 4th British Machine Vision Conf., Surrey, England, pp. 125- 134.

  • Tan, T.N., Sullivan, G.D., and Baker, K.D. 1994a. Pose determination and recognition of vehicles in traffic scenes. In Proc. 3rd European Conf. Comput. Vision, Stockholm, Sweden, pp. 501-506.

  • Tan, T.N., Sullivan, G.D., and Baker, K.D. 1994b. Fast vehicle localisation and recognition without line extraction. In Proc. 5th British Machine Vision Conference, York, England, pp. 85-94.

  • Tan, T.N., Sullivan, G.D., and Baker, K.D. 1996. Closed-form algorithms for object pose and scale recovery in constrained scene. Pattern Recognition, 29:449-462.

    Article  Google Scholar 

  • Thompson, D.W. and Mundy, J.L. 1987. Three-dimensional model matching from an unconstrained viewpoint. In Proc. of IEEE Int. Conf. on Robotics and Automation, Raleigh, NC, USA, pp. 208- 220.

  • Tsai, R.Y. 1986. An efficient and accurate camera calibration technique for 3D machine vision. In Proc. of IEEE CVPR86, pp. 364- 374.

  • Ullman, S. and Basri, R. 1991. Recognition by linear combinations of models. IEEE Trans. Patt. Anal. Mach. Intell., 13:992-1006.

    Article  Google Scholar 

  • Waltz, E. and Llinas, J. 1990. Multisensor Data Fusion. Artech House: Boston.

    Google Scholar 

  • Wolfson, H.J. 1990. Model-based object recognition by geometric hashing. In Proc. of 1st Euro. Conf. Comput. Vision, Antibes, France, pp. 526-536.

  • Worrall, A.D., Baker, K.D., and Sullivan, G.D. 1989. Model based perspective inversion. Image and Vision Computing, 7:17-23.

    Article  Google Scholar 

  • Worrall, A.D., Marslin, R.F., Sullivan, G.D., and Baker, K.D. 1991. Model-based tracking. In Proc. of 2nd British Machine Vision Conf., Glasgow, Scotland, pp. 310-318.

  • Worrall, A.D., Sullivan, G.D., and Baker, K.D. 1993. Advances in model-based traffic vision. In Proc. of 4th British Machine Vision Conf., Surrey, England, pp. 559-568.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, T., Sullivan, G. & Baker, K. Model-Based Localisation and Recognition of Road Vehicles. International Journal of Computer Vision 27, 5–25 (1998). https://doi.org/10.1023/A:1007924428535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007924428535

Keywords

Navigation