Skip to main content
Log in

Conformational analysis of six- and twelve-membered ring compounds by molecular dynamics

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A molecular dynamics (MD)-based conformational analysis has been performed on a number of cycloalkanes in order to demonstrate the reliability and generality of MD as a tool for conformational analysis. MD simulations on cyclohexane and a series of methyl-substituted cyclohexanes were performed at temperatures between 400 and 1200 K. Depending on the simulation temperature, different types of interconversions (twist-boat–twist-boat, twist- boat–chair and chair–chair) could be observed, and the MD simulations demonstrated the expected correlation between simulation temperature and ring inversion barriers. A series of methyl-substituted 1,3- dioxanes were investigated at 1000 K, and the number of chair–chair interconversions could be quantitatively correlated to the experimentally determined ring inversion barrier. Similarly, the distribution of sampled minimum-energy conformations correlated with the energy-derived Boltzmann distribution. The macrocyclic ring system cyclododecane was subjected to an MD simulation at 1000 K and 71 different conformations could be sampled. These conformations were compared with the results of previously reported conformational analyses using stochastic search methods, and the MD method provided 19 out of the 20 most stable conformations found in the MM2 force field. Finally, the general performance of the MD method for conformational analysis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leach, A.R., In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in Computational Chemistry, Vol. 2, VCH, New York, NY, U.S.A., 1991, pp. 1–55.

    Google Scholar 

  2. Dammkoehler, R.A., Karasek, S.F., Shands, E.F.B. and Marshall, G.R., J. Comput.-Aided Mol. Design, 9 (1995) 491.

    Google Scholar 

  3. Dolata, D.P., Leach, A.R. and Prout, K., J. Comput.-Aided Mol. Design, 1 (1987) 73.

    Google Scholar 

  4. Leach, A.R., Prout, K. and Dolata, D.P., J. Comput.-Aided Mol. Design, 4 (1990) 271.

    Google Scholar 

  5. Crippen, G.M., J. Comput. Phys., 26 (1987) 449.

    Google Scholar 

  6. Van Gunsteren, W.F., Weiner, P.K. and Wilkinson, A.J. (Eds.) Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, Vol. 2, ESCOM, Leiden, The Netherlands, 1993.

    Google Scholar 

  7. Karplus, M. and Petsko, G.A., Nature, 347 (1990) 631.

    Google Scholar 

  8. Van Gunsteren, W.F., Curr. Opin. Struct. Biol., 3 (1993) 277.

    Google Scholar 

  9. Edvardsen, Ø. and Dahl, S.G., J. Neural Transm., 83 (1991) 157.

    Google Scholar 

  10. Hudson, B.D., Gerge, A.R., Ford, M.G. and Livingstone, D.J., J. Comput.-Aided Mol. Design, 6 (1992) 191.

    Google Scholar 

  11. Auffinger, P. and Wipff, G., J. Comput. Chem., 11 (1990) 19.

    Google Scholar 

  12. Tran, V.H. and Brady, J.W., Biopolymers, 29 (1990) 977.

    Google Scholar 

  13. Kawai, T., Tomioka, N., Ichinose, T., Takeda, M. and Itai, A., Chem. Pharm. Bull., 42 (1994) 1315.

    Google Scholar 

  14. Saunders, M., Houk, K.N., Wu, Y.-D., Still, W.C., Lipton, M., Chang, G. and Guida, W.C., J. Am. Chem. Soc., 112 (1990) 1419.

    Google Scholar 

  15. Böhm, H.-J., Klebe, G., Lorenz, T., Mietzner, T. and Siggel, L., J. Comput. Chem., 11 (1990) 1021.

    Google Scholar 

  16. Zhang, R. and Mattice, W.L., J. Chem. Phys., 98 (1993) 9888.

    Google Scholar 

  17. Brooks III, C.L., Karplus, M. and Pettitt, B.M., Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics, Wiley, New York, NY, U.S.A., 1988, pp. 14–21.

    Google Scholar 

  18. Bruccoleri, R.E. and Karplus, M., Biopolymers, 29 (1990) 1847.

    Google Scholar 

  19. Burket, U. and Allinger, N.L., Molecular Mechanics, ACS Monograph, Vol. 177, American Chemical Society, Washington, DC, U.S.A., 1982.

    Google Scholar 

  20. Anderson, J.E., Bloodworth, A.J. and Shah, A., J. Chem. Soc. Perkin Trans. II, (1993) 1927.

  21. Kolossváry, I. and Guida, W.C., J. Am. Chem. Soc., 115 (1993) 2107.

    Google Scholar 

  22. Pertsin, A.J., Hahn, J. and Grossmann, H.P., J. Comput. Chem., 15 (1994) 1121.

    Google Scholar 

  23. Saunders, M., J. Comput. Chem., 12 (1991) 645.

    Google Scholar 

  24. SYBYL, Tripos Associates Inc., St. Louis, MO, U.S.A.

  25. Clark, M., Cramer III, R.D. and Van Opdenbosch, N., J. Comput. Chem., 10 (1989) 982.

    Google Scholar 

  26. Labanowski, J., Motoc, C.B., Naylor, D., Mayer, R.A. and Dammkoehler, R.A., Quant. Struct.-Act. Relatsh., 5 (1986) 138.

    Google Scholar 

  27. Stewart, J.J.P., J. Comput.-Aided Mol. Design, 4 (1990) 1.

    Google Scholar 

  28. Allinger, N.L., J. Am. Chem. Soc., 99 (1977) 8127.

    Google Scholar 

  29. Allinger, N.L., Yuh, Y.H. and Lii, J.-H., J. Am. Chem. Soc., 111 (1989) 8551.

    Google Scholar 

  30. InStar Software, Lund, Sweden.

  31. Friebolin, H., Schmid, H.G., Kabuss, S. and Faisst, W., Org. Magn. Reson., 1 (1969) 147.

    Google Scholar 

  32. Dale, J., Stereochemistry and Conformational Analysis, Verlag Chemie, New York, NY, U.S.A., 1978, pp. 147–191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, I.T., Jørgensen, F.S. Conformational analysis of six- and twelve-membered ring compounds by molecular dynamics. J Comput Aided Mol Des 11, 385–394 (1997). https://doi.org/10.1023/A:1007925123923

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007925123923

Navigation