Skip to main content
Log in

Toward the identification of the cardiac cGMP inhibited-phosphodiesterase catalytic site

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Cyclic nucleotide phosphodiesterases (PDEs) comprise a complex group of enzymes; five major PDE families or classes with distinctive properties have been identified. Among these a great deal of interest has recently been focused on the so called cGMP-inhibited low Km cAMP phosphodiesterase (cGI PDE) or PDE III. A number of positive inotropic agents, including the well-known milrinone, display a specific inhibition of PDE III as primary mechanism of action. Recent studies have been carried out to develop a pharmacophore model of the PDE III active site. We therefore performed molecular modelling and 3D-SAR studies so as to better define structural requirements for potent and selective enzymatic inhibition. The DISCO (DIStance COmparison) strategy has been applied on a set of compounds taken from literature and a milrinone analogue previously synthesized by us, all of which are characterized by a marked inotropic effect but with varying degrees of enzyme selectivity. A common pharmacophoric model was derived, validated and considered as starting point to perform a 3D-SAR study using the GRID force field and PCA (Principal Component Analysis) with the aim of rationally designing more selective inhibitors. This paper presents the results of this theoretical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alousi, A.A., Canter, J.M., Montenaro, M.J., Fort, D.J. and Ferrari, R.A., J. Cardiovasc. Pharmacol., 5 (1983) 792.

    Google Scholar 

  2. Butt, E., Beltman, J., Becker, D.E., Jensen, G.S., Rybalkih, S.D., Jastorff, B. and Beavo, J.A., Mol. Pharmacol., 47 (1995) 340.

    Google Scholar 

  3. Bristol, J.A., Sircar, I., Moos, W.H., Evans, D.B. and Weishaar, R.E., J. Med. Chem., 27 (1984) 1099.

    Google Scholar 

  4. Erhardt, P.W., Hagedorn III, A.A. and Sabio, M., Mol. Pharmacol., 33 (1988) 1.

    Google Scholar 

  5. Moos, W.H., Humblet, C.C., Sircar, I., Rithner, C., Weishaar, R.E., Bristol, J.A. and McPhail, A.T., J. Med. Chem., 30 (1987) 1963.

    Google Scholar 

  6. Erhardt, P.W. and Chou, Y.L., Life Sci., 49 (1991) 553.

    Google Scholar 

  7. Mosti, L., Menozzi, G., Schenone, P., Dorigo, P., Gaion, R.M., Benetollo, F. and Bombieri, G., Eur. J. Med. Chem., 24 (1989) 517.

    Google Scholar 

  8. Martin, Y.C., Bures, M.G., Danaher, E.A., De Lazzer, J., Lico, I. and Pavlik, P.A., J. Comput.-Aided Mol. Design, 7 (1993) 83.

    Google Scholar 

  9. Sybyl, Version 6.2, Tripos Inc., St. Louis, MO, 1995.

  10. Goodford, P., J. Chemometrics, 10 (1996) 107.

    Google Scholar 

  11. Manly, B.F., Multivariate Statistical Methods – A Primer, Chapman and Hall, London, 1989.

    Google Scholar 

  12. MacroModel, Version 5.5, Columbia University, New York, NY, 1996.

  13. Mohamadi, F., Richards, N.G.J., Guida, W.C., Liskamp, R., Caufield, C., Chang, G., Hendrickson, T. and Still, W.C., J. Comput.-Aided Mol. Design, 4 (1990) 440.

    Google Scholar 

  14. Gundertofte, K., Liljefors, T., Norrby, P.O. and Pettersson, I., J. Comput. Chem., 17 (1996) 429.

    Google Scholar 

  15. Apaya, R.P., Lucchese, B., Price, S.L. and Vinter, J.G., J. Comput.-Aided Mol. Design, 9 (1995) 33.

    Google Scholar 

  16. Fossa, P., Altomare, C., Cellamare, S., Summo, L., Mosti, L. and Carotti, A., Acta First Italian–Swiss Meeting Med. Chem., (1997) 128.

  17. Allen, F.H., Bellard, S., Brice, M.D., Cartwright, B.A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B.G., Kennard, O., Motherwell, W.D.S., Rodgers, J.R. and Watson, D.G., Acta Crystallogr., B35 (1979) 2331.

    Google Scholar 

  18. Singh, B., Bacon, E.R., Lesher, G.Y., Robinson, S., Pennock, P.O., Bode, D.C., Pagani, E.D., Bentley, R.G., Connell, M.J., Hamel, L.T. and Silver, P.J., J. Med. Chem., 38 (1995) 2546.

    Google Scholar 

  19. Jin, S.L.C., Swinnen, J.V. and Conti, M., J. Biol. Chem., 267 (1992) 18929.

    Google Scholar 

  20. Schudt, C., Winder, S., Müller, B. and Ukena, D., Biochem. Pharmacol., 42 (1991) 153.

    Google Scholar 

  21. Jonas, R., Klockow, M., Lues, I., Prücher, H., Schliep, H.J. and Wurziger, H., Eur. J. Med. Chem., 28 (1993) 129.

    Google Scholar 

  22. Singh, B., Lesher, G.Y., Pluncket, K.C., Pagani, E.D., Bode, D.C., Bentley, R.G., Connell, M.J., Hamel, L.T. and Silver, P.J., J. Med. Chem., 35 (1992) 4858.

    Google Scholar 

  23. Singh, B., Bacon, E.R., Robinson, S., Fritz, R.K., Lesher, G.Y., Kumar, V., Dority, J.A., Reuman, M., Kuo, G.H., Eissenstat, M.A., Pagani, E.D., Bode, D.C., Bentley, R.G., Connell, M.J., Hamel, L.T. and Silver, P.J., J. Med. Chem., 37 (1994) 248.

    Google Scholar 

  24. U.S. Patent 5141931, Annu. Drug Data Report, 17 (1995) 256.

    Google Scholar 

  25. Sugioka, M., Ito, M., Masuoka, H., Ichikawa, K., Konishi, T., Tanaka, T. and Nakano, T., Naunyn-Schmiedeberg's Arch. Pharmacol., 350 (1994) 284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fossa, P., Boggia, R. & Mosti, L. Toward the identification of the cardiac cGMP inhibited-phosphodiesterase catalytic site. J Comput Aided Mol Des 12, 361 (1998). https://doi.org/10.1023/A:1007928412086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007928412086

Navigation