Skip to main content
Log in

A comparison of heuristic search algorithms for molecular docking

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

This paper describes the implementation and comparison of four heuristic search algorithms (genetic algorithm, evolutionary programming, simulated annealing and tabu search) and a random search procedure for flexible molecular docking. To our knowledge, this is the first application of the tabu search algorithm in this area. The algorithms are compared using a recently described fast molecular recognition potential function and a diverse set of five protein–ligand systems. Statistical analysis of the results indicates that overall the genetic algorithm performs best in terms of the median energy of the solutions located. However, tabu search shows a better performance in terms of locating solutions close to the crystallographic ligand conformation. These results suggest that a hybrid search algorithm may give superior results to any of the algorithms alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaney, J.M. and Dixon, J.S., Perspect. Drug Discov. Design, 1 (1993) 301.

    Google Scholar 

  2. Jones, G. and Willett, P., Curr. Opin. Biotechnol., 6 (1995) 652.

    Google Scholar 

  3. Lybrand, T.P., Curr. Opin. Struct. Biol., 5 (1995) 224.

    Google Scholar 

  4. Rosenfeld, R., Vajda, S. and Delisi, C., Annu. Rev. Biophys., Biomol. Struct., 24 (1995) 677.

    Google Scholar 

  5. Gschwend, D.A., Good, A.C. and Kuntz, I.D., J. Mol. Recog., 9 (1996) 175.

    Google Scholar 

  6. Lengauer, T. and Rarey, M., Curr. Opin. Struct. Biol., 6 (1996) 402.

    Google Scholar 

  7. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  8. Goodsell, D.S. and Olson, A.J., Proteins Struct. Funct. Genet., 8 (1990) 195.

    Google Scholar 

  9. Yamada, M. and Itai, A., Chem. Pharm. Bull., 41 (1993) 1200.

    Google Scholar 

  10. Yamada, M. and Itai, A., Chem. Pharm. Bull., 41 (1993) 1203.

    Google Scholar 

  11. Leach, A.R., J. Mol. Biol., 235 (1994) 345.

    Google Scholar 

  12. Miller, M.D., Kearsley, S.K., Underwood, D.J. and Sheridan, R.P., J. Comput.-Aided Mol. Design, 8 (1994) 153.

    Google Scholar 

  13. Clark, K.P. and Ajay, J. Comput. Chem., 16 (1995) 1210.

    Google Scholar 

  14. Gehlhaar, D.K., Verkhivker, G.M., Rejto, P.A., Sherman, C.J., Fogel, D.B., Fogel, L.J. and Freer, S.T., Chem. Biol., 2 (1995) 317.

    Google Scholar 

  15. Gehlhaar, D.K., Verkhivker, G.M., Rejto, P.A., Fogel, D.B., Fogel, L.J. and Freer, S.T., In McDonnell, J.R., Reynolds, R.G. and Fogel, D.B. (Eds.) Evolutionary Programming IV (Proceedings of the Fourth Annual Conference on Evolutionary Programming), MIT Press, Cambridge, MA, U.S.A., 1995, pp. 615–627.

  16. Jones, G., Willett, P. and Glen, R.C., J. Mol. Biol., 245 (1995) 43.

    Google Scholar 

  17. Judson, R.S., Tan, Y.T., Mori, E., Melius, C., Jaeger, E.P., Treasurywala, A.M. and Mathiowetz, A., J. Comput. Chem., 16 (1995) 1405.

    Google Scholar 

  18. Oshiro, C.M., Kuntz, I.D. and Dixon, J.S., J. Comput.-Aided Mol. Design, 9 (1995) 113.

    Google Scholar 

  19. Goodsell, D.S., Morris, G.M. and Olson, A.J., J. Mol. Recog., 9 (1996) 1.

    Google Scholar 

  20. Morris, G.M., Goodsell, D.S., Huey, R. and Olson, A.J., J. Comput.-Aided Mol. Design, 10 (1996) 293.

    Google Scholar 

  21. Rarey, M., Wefing, S. and Lengauer, T., J. Comput.-Aided Mol. Design, 10 (1996) 41.

    Google Scholar 

  22. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    Google Scholar 

  23. Welch, W., Ruppert, J. and Jain, A.N., Chem. Biol., 3 (1996) 449.

    Google Scholar 

  24. Abagyan, R.A., Totrov, M. and Kuznetsov, D., J. Comput. Chem., 15 (1994) 488.

    Google Scholar 

  25. Read, R.J., Hart, T.N., Cummings, M.D. and Ness, S.R., Supramol. Chem., 6 (1995) 135.

    Google Scholar 

  26. Verkhivker, G.M., Rejto, P.A., Gehlhaar, D.K. and Freer, S.T., Proteins Struct. Funct. Genet., 250 (1996) 342.

    Google Scholar 

  27. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., Science, 220 (1983) 671.

    Google Scholar 

  28. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., J. Chem. Phys., 21 (1953) 1087.

    Google Scholar 

  29. Szu, H.H. and Hartley, R.L., Phys. Lett., A122 (1987) 157.

    Google Scholar 

  30. Fogel, D., Evolutionary Computation: Towards a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ, U.S.A., 1995, pp. 121–186.

    Google Scholar 

  31. Yao, X. and Liu, Y., In Fogel, L.J., Angeline, P.J. and Bäck, T. (Eds.) Evolutionary Programming V (Proceedings of the Fifth Annual Conference on Evolutionary Programming), MIT Press, Cambridge, MA, U.S.A., 1996, pp. 257–266.

  32. Saravanan, N., Fogel, D.B. and Nelson, K.M., BioSystems, 36 (1995) 157.

    Google Scholar 

  33. Glover, F. and Laguna, M., In Reeves, C.R. (Ed.) Modern Heuristic Techniques for Combinatorial Problems, Blackwell, Oxford, U.K., 1993, pp. 70–150.

    Google Scholar 

  34. Cvijovic, D. and Klinowski, J., Science, 267 (1995) 664.

    Google Scholar 

  35. Kvasnička, V. and Pospíchal, J., J. Chem. Inf. Comput. Sci., 34 (1994) 1109.

    Google Scholar 

  36. Goodman, J.M. and Still, W.C., J. Comput. Chem., 12 (1991) 1110.

    Google Scholar 

  37. Huber, T., Torda, A. and Van Gunsteren, W.F., J. Comput.-Aided Mol. Design, 8 (1994) 695.

    Google Scholar 

  38. Smellie, A., Teig, S.L. and Towbin, P., J. Comput. Chem., 16 (1995) 171.

    Google Scholar 

  39. Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, U.S.A., 1989.

    Google Scholar 

  40. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., Numerical Recipes in C: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, U.K., 1992, pp. 412–420.

    Google Scholar 

  41. Gardner, M.J. and Altman, D.G., Statistics with Confidence, British Medical Journal, Tavistock Square, London, U.K., 1989, pp. 74–76.

    Google Scholar 

  42. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  43. InsightII/Discover, v. 95.0, Molecular Simulations Inc., San Diego, CA, U.S.A., 1996.

  44. Poornima, C.S. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 500.

    Google Scholar 

  45. Poornima, C.S. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 513.

    Google Scholar 

  46. Poornima, C.S. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 521.

    Google Scholar 

  47. Guida, W.C., Bohacek, R.S. and Erion, M.D., J. Comput. Chem., 13 (1992) 214.

    Google Scholar 

  48. Mayo, S.L., Olafson, B.D. and Goddard, W.A., J. Phys. Chem., 94 (1990) 8897.

    Google Scholar 

  49. Gehlhaar, D.K., private communication, 1996.

  50. Gschwend, D.A. and Kuntz, I.D., J. Comput.-Aided Mol. Design, 10 (1996) 123.

    Google Scholar 

  51. Meza, J.C., Judson, R.S., Faulkner, T.R. and Treasurywala, A.M., J. Comput. Chem., 17 (1996) 1142.

    Google Scholar 

  52. Montoya, F. and Dubois, J.M., Europhys. Lett., 22 (1993) 79.

    Google Scholar 

  53. Kido, T., Takagi, K. and Nakanishi, M., Informatica, 18 (1994) 399.

    Google Scholar 

  54. Mahfoud, S.W. and Goldberg, D.E., Paral. Comput., 21 (1995) 1.

    Google Scholar 

  55. Tang, R.Y., Yang, S.Y., Li, Y., Wen, G. and Mei, T.M., IEEE Trans. Magnetics, 32 (1996) 1326.

    Google Scholar 

  56. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Mol. Biol., 257 (1982) 13650.

    Google Scholar 

  57. Burmeister, W.P., Henrissat, B., Bosso, C., Cusack, S. and Ruigrok, R.W.H., Structure, 1 (1993) 19.

    Google Scholar 

  58. Lam, P.Y.S., Jadhav, P.K., Eyermann, C.J., Hodge, C.N., Ru, Y., Bacheler, L.T., Meek, J.L., Otto, M.J., Rayner, M.M., Wong, Y.N., Chang, C.-H., Weber, P.C., Jackson, D.A., Sharpe, T.R. and Erickson-Viitanen, S., Science, 263 (1994) 380.

    Google Scholar 

  59. Brandstetter, H., Turk, D., Hoeffken, H.W., Grosse, D., Stuerzebecher, J., Martin, P.D., Edwards, B.F.P. and Bode, W., J. Mol. Biol., 226 (1992) 1085.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westhead, D.R., Clark, D.E. & Murray, C.W. A comparison of heuristic search algorithms for molecular docking. J Comput Aided Mol Des 11, 209–228 (1997). https://doi.org/10.1023/A:1007934310264

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007934310264

Navigation