Skip to main content

Advertisement

Log in

Determining the Epipolar Geometry and its Uncertainty: A Review

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Two images of a single scene/object are related by the epipolar geometry, which can be described by a 3×3 singular matrix called the essential matrix if images' internal parameters are known, or the fundamental matrix otherwise. It captures all geometric information contained in two images, and its determination is very important in many applications such as scene modeling and vehicle navigation. This paper gives an introduction to the epipolar geometry, and provides a complete review of the current techniques for estimating the fundamental matrix and its uncertainty. A well-founded measure is proposed to compare these techniques. Projective reconstruction is also reviewed. The software which we have developed for this review is available on the Internet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aggarwal, J. and Nandhakumar, N. 1988. On the computation of motion from sequences of images-A review. In Proc. IEEE, Vol. 76,No. 8, pp. 917-935.

    Article  Google Scholar 

  • Aloimonos, J. 1990. Perspective approximations. Image and Vision Computing, 8(3):179-192.

    Article  Google Scholar 

  • Anderson, T. 1958. An Introduction to Multivariate Statistical Analysis. John Wiley & Sons, Inc.

  • Ayache, N. 1991.Artificial Vision for Mobile Robots. MIT Press.

  • Ayer, S., Schroeter, P., and Bigün, J. 1994. Segmentation of moving objects by robust motion parameterestimation over multiple frames. In Proc. of the 3rd European Conf. on Computer Vision, J.-O. Eklundh (Ed.), Vols. 800-801 of Lecture Notes in Computer Science, Springer-Verlag: Stockholm, Sweden, Vol. II, pp. 316- 327.

    Google Scholar 

  • Beardsley, P., Zisserman, A., and Murray, D. 1994. Navigation using affine structure from motion. In Proc. of the 3rd European Conf. on Computer Vision, J.-O. Eklundh (Ed.), Vol. 2 of Lecture Notes in Computer Science, Springer-Verlag: Stockholm, Sweden, pp. 85- 96.

    Google Scholar 

  • Boufama, B. and Mohr, R. 1995. Epipole and fundamental matrix estimation using the virtual parallax property. In Proc. of the 5th Int. Conf. on Computer Vision, IEEE Computer Society Press: Boston, MA, pp. 1030-1036.

    Google Scholar 

  • Carlsson, S. 1994. Multiple image invariance using the double algebra. In Applications of Invariance in Computer Vision, J.L. Mundy, A. Zissermann, and D. Forsyth (Eds.), Vol. 825 of Lecture Notes in Computer Science, Springer-Verlag, pp. 145-164.

  • Csurka, G. 1996. Modélisation projective des objets tridimensionnels en vision par ordinateur. Ph.D. Thesis, University of Nice, Sophia-Antipolis, France.

    Google Scholar 

  • Csurka, G., Zeller, C., Zhang, Z., and Faugeras, O. 1996. Characterizing the uncertainty of the fundamental matrix. Computer Vision and Image Understanding, 68(1):18-36, 1997. Updated version of INRIA Research Report 2560, 1995.

    Article  Google Scholar 

  • Deriche, R., Zhang, Z., Luong, Q.-T., and Faugeras, O. 1994. Robust recovery of the epipolar geometry for an uncalibrated stereo rig. In Proc. of the 3rd European Conf. on Computer Vision, J.-O. Eklundh (Ed.), Vols. 800-801 of Lecture Notes in Computer Science, Springer Verlag: Stockholm, Sweden, Vol. 1, pp. 567-576.

    Google Scholar 

  • Enciso, R. 1995. Auto-calibration des capteurs visuels actifs. Reconstruction 3D active. Ph.D. Thesis, University Paris XI Orsay.

  • Faugeras, O. 1992. What can be seen in three dimensions with an uncalibrated stereo rig. In Proc. of the 2nd European Conf. on Computer Vision, G. Sandini (Ed.), Vol. 588 of Lecture Notes in Computer Science, Springer-Verlag: Santa Margherita Ligure, Italy, pp. 563-578.

    Google Scholar 

  • Faugeras, O. 1993. Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press.

  • Faugeras, O. 1995. Stratification of 3-D vision: Projective, affine, and metric representations. Journal of the Optical Society of America A, 12(3):465-484.

    Google Scholar 

  • Faugeras, O. and Lustman, F. 1988. Motion and structure from motion in a piecewise planar environment. International Journal of Pattern Recognition and Artificial Intelligence, 2(3):485- 508.

    Google Scholar 

  • Faugeras, O., Luong, T., and Maybank, S. 1992. Camera selfcalibration: Theory and experiments. In Proc. 2nd ECCV, G. Sandini (Ed.), Vol. 588 of Lecture Notes in Computer Science, Springer-Verlag: Santa Margherita Ligure, Italy, pp. 321-334.

    Google Scholar 

  • Faugeras, O. and Robert, L. 1994. What can two images tell us about a third one?. In Proc. of the 3rd European Conf. on Computer Vision, J.-O. Eklundh (Ed.), Vols. 800-801 of Lecture Notes in Computer Science, Springer-Verlag: Stockholm, Sweden. Also INRIA Technical report 2018.

    Google Scholar 

  • Faugeras, O. and Mourrain, B. 1995. On the geometry and algebra of the point and line correspondences between nimages. In Proc. of the 5th Int. Conf. on Computer Vision, IEEE Computer Society Press: Boston, MA, pp. 951-956.

    Google Scholar 

  • Fischler, M. and Bolles, R. 1981. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24:381- 385.

    Article  Google Scholar 

  • Golub, G. and van Loan, C. 1989. Matrix Computations. The John Hopkins University Press.

  • Haralick, R. 1986. Computer vision theory: The lack thereof. Computer Vision, Graphics, and Image Processing, 36:372-386.

    Google Scholar 

  • Hartley, R. 1993. Euclidean reconstruction from uncalibrated views. In Applications of Invariance in Computer Vision, J. Mundy and A. Zisserman (Eds.), Vol. 825 of Lecture Notes in Computer Science, Springer-Verlag: Berlin, pp. 237-256.

    Google Scholar 

  • Hartley, R. 1994. Projective reconstruction and invariants from multiple images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(10):1036-1040.

    Article  Google Scholar 

  • Hartley, R. 1995. In defence of the 8-point algorithm. In Proc. of the 5th Int. Conf. on Computer Vision, IEEE Computer Society Press: Boston, MA, pp. 1064-1070.

    Google Scholar 

  • Hartley, R., Gupta, R., and Chang, T. 1992. Stereo from uncalibrated cameras. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Urbana Champaign, IL, pp. 761-764.

  • Hartley, R. and Sturm, P. 1994. Triangulation. In Proc. of the ARPA Image Understanding Workshop, Defense Advanced Research Projects Agency, Morgan Kaufmann Publishers, Inc., pp. 957- 966.

  • Heeger, D.J. and Jepson, A.D. 1992. Subspace methods for recovering rigid motion I: Algorithm and implementation. The International Journal of Computer Vision, 7(2):95-117.

    Google Scholar 

  • Hesse, O. 1863. Die cubische gleichung, von welcher die Lösung des problems der homographie von M. Chasles Abhängt. J. Reine Angew. Math., 62:188-192.

    Google Scholar 

  • Huang, T. and Netravali, A. 1994. Motion and structure from feature correspondences: A review. In Proc. IEEE, 82(2):252-268.

    Article  Google Scholar 

  • Huber, P. 1981. Robust Statistics. John Wiley & Sons: New York.

    Google Scholar 

  • Laveau, S. 1996. Géométrie d'un système de Ncaméras. Théorie. Estimation. Applications. Ph.D. Thesis, École Polytechnique.

  • Longuet-Higgins, H. 1981. A computer algorithm for reconstructing a scene from two projections. Nature, 293:133-135.

    Google Scholar 

  • Luong, Q.-T. 1992. Matrice Fondamentale et CalibrationVisuelle sur l'Environnement-Vers une plus grande autonomie des systèmes robotiques. Ph.D. Thesis, Université de Paris-Sud, Centre d'Orsay.

    Google Scholar 

  • Luong, Q.-T. and Viéville, T. 1994. Canonic representations for the geometries of multiple projective views. In Proc. of the 3rd European Conf. on Computer Vision, J.-O. Eklundh (Ed.), Vols. 800- 801 of Lecture Notes in Computer Science, Springer-Verlag: Stockholm, Sweden, Vol. 1, pp. 589-599.

    Google Scholar 

  • Luong, Q.-T. and Faugeras, O.D. 1996. The fundamental matrix: Theory, algorithms and stability analysis. The International Journal of Computer Vision, 1(17):43-76.

    Google Scholar 

  • Maybank, S. 1992. Theory of Reconstruction from Image Motion. Springer-Verlag.

  • Maybank, S.J. and Faugeras, O.D. 1992. A theory of self-calibration of a moving camera. The International Journal of Computer Vision, 8(2):123-152.

    Google Scholar 

  • Mohr, R., Boufama, B., and Brand, P. 1993a. Accurate projective reconstruction. In Applications of Invariance in Computer Vision, J. Mundy and A. Zisserman (Eds.), Vol. 825 of Lecture Notes in Computer Science, Springer-Verlag: Berlin, pp. 257-276.

    Google Scholar 

  • Mohr, R., Veillon, F., and Quan, L. 1993b. Relative 3d reconstruction using multiple uncalibrated images. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 543-548.

  • More, J. 1977. The levenberg-marquardt algorithm, implementation and theory. In Numerical Analysis, G.A. Watson (Ed.), Lecture Notes in Mathematics 630, Springer-Verlag.

  • Mundy, J.L. and Zisserman, A. (Eds.) 1992.Geometric Invariance in Computer Vision. MIT Press.

  • Odobez, J.-M. and Bouthemy, P. 1994. Robust multiresolution estimation of parametric motion models applied to complex scenes. Publication Interne 788, IRISA-INRIA Rennes, France.

    Google Scholar 

  • Olsen, S. 1992. Epipolar line estimation. In Proc. of the 2nd European Conf. on Computer Vision, Santa Margherita Ligure, Italy, pp. 307-311.

    Google Scholar 

  • Ponce, J. and Genc, Y. 1996. Epipolar geometry and linear subspace methods: A new approach to weak calibration. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, pp. 776-781.

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. 1988. Numerical Recipes in C. Cambridge University Press.

  • Quan, L. 1993. Affine stereo calibration for relative affine shape reconstruction. In Proc. of theFourth BritishMachineVision Conf., Surrey, England, pp. 659-668.

  • Quan, L. 1995. Invariants of six points and projective reconstruction from three uncalibrated images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(1).

  • Rey W.J. 1983. Introduction to Robust and Quasi-Robust Statistical Methods. Springer: Berlin, Heidelberg.

    Google Scholar 

  • Robert, L. and Faugeras, O. 1993. Relative 3d positioning and 3d convex hull computation from a weakly calibrated stereo pair. In Proc. of the 4th Int. Conf. on Computer Vision, IEEE Computer Society Press: Berlin, Germany, pp. 540-544. Also INRIA Technical Report 2349.

    Google Scholar 

  • Rothwell, C., Csurka, G., and Faugeras, O. 1995. A comparison of projective reconstruction methods for pairs of views. In Proc. of the 5th Int. Conf. on Computer Vision, IEEE Computer Society Press: Boston, MA, pp. 932-937.

    Google Scholar 

  • Rousseeuw, P. and Leroy, A. 1987. Robust Regression and Outlier Detection. John Wiley & Sons: New York.

    Google Scholar 

  • Shapiro, L. 1993. Affine analysis of image sequences. Ph.D. Thesis, University of Oxford, Department of Engineering Science, Oxford, UK.

    Google Scholar 

  • Shapiro, L., Zisserman, A., and Brady, M. 1994. Motion from point matches using affine epipolar geometry. In Proc. of the 3rd European Conf. on Computer Vision, J.-O. Eklundh (Ed.), Vol. II of Lecture Notes in Computer Science, Springer-Verlag: Stockholm, Sweden, pp. 73-84.

    Google Scholar 

  • Shapiro, L. and Brady, M. 1995. Rejecting outliers and estimating errors in an orthogonal-regression framework. Phil. Trans. Royal Soc. of Lon. A, 350:407-439.

    Google Scholar 

  • Shashua, A. 1994a. Projective structure from uncalibrated images: structure from motion and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(8):778-790.

    Article  Google Scholar 

  • Shashua, A. 1994b. Trilinearity in visual recognition by alignment. In Proc. of the 3rd European Conf. on Computer Vision, J.-O. Eklundh (Ed.), Vols. 800-801 of Lecture Notes in Computer Science, Springer-Verlag: Stockholm, Sweden, pp. 479-484.

    Google Scholar 

  • Spetsakis, M. and Aloimonos, J. 1989. A unified theory of structure from motion. Technical Report CAR-TR-482, Computer Vision Laboratory, University of Maryland.

  • Sturm, R. 1869. Das problem der projektivitt und seine anwendung auf die flächen zweiten grades. Math. Ann., 1:533-574.

    Google Scholar 

  • Torr, P. 1995. Motion segmentation and outlier detection. Ph.D. Thesis, Department of Engineering Science, University of Oxford.

  • Torr, P. and Murray, D. 1993. Outlier detection and motion segmentation. In Sensor Fusion VI, SPIE Vol. 2059, P. Schenker (Ed.), Boston, pp. 432-443.

  • Torr, P., Beardsley, P., and Murray, D. 1994. Robust vision. British Machine Vision Conf., University of York, UK, pp. 145-154.

    Google Scholar 

  • Torr, P., Zisserman, A., and Maybank, S. 1995. Robust detection of degenerate configurations for the fundamental matrix. In Proc. of the 5th Int. Conf. on Computer Vision, IEEE Computer Society Press: Boston, MA, pp. 1037-1042.

    Google Scholar 

  • Torr, P., Zisserman, A., and Maybank, S. 1996. Robust detection of degenerate configurations whilst estimating the fundamental matrix. Technical Report OUEL 2090/96, Oxford University, Dept. of Engineering Science.

  • Triggs, B. 1995. Matching constraints and the joint image. In Proc. of the 5th Int. Conf. on Computer Vision, IEEE Computer Society Press: Boston, MA, pp. 338-343.

    Google Scholar 

  • Tsai, R. and Huang, T. 1984. Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surface. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1):13-26.

    Google Scholar 

  • Viéville, T., Faugeras, O.D., and Luong, Q.-T. 1996. Motion of points and lines in the uncalibrated case. The International Journal of Computer Vision, 17(1):7-42.

    Google Scholar 

  • Weinshall, D., Werman, M., and Shashua, A. 1995. Shape tensors for efficient and learnable indexing. IEEEWorkshop on Representation of Visual Scenes, IEEE, pp. 58-65.

  • Xu, G. and Zhang, Z. 1996. Epipolar Geometry in Stereo, Motion and Object Recognition: A Unified Approach. Kluwer Academic Publishers.

  • Zeller, C. 1996. Calibration projective affine et euclidienne en vision par ordinateur. Ph.D. Thesis, École Polytechnique.

  • Zeller, C. and Faugeras, O. 1994. Applications of non-metric vision to some visual guided tasks. In Proc. of the Int. Conf. on Pattern Recognition, Computer Society Press: Jerusalem, Israel, pp. 132-136. A longer version in INRIA Tech. Report RR2308.

    Google Scholar 

  • Zhang, Z. 1995. Motion and structure of four points from one motion of a stereo rig with unknown extrinsic parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(12):1222- 1227.

    Article  Google Scholar 

  • Zhang, Z. 1996a. A new multistage approach to motion and structure estimation: From essential parameters to euclidean motion via fundamental matrix. Research Report 2910, INRIA Sophia-Antipolis, France. Also appeared in Journal of the Optical Society of AmericaA, 14(11):2938-2950, 1997.

    Google Scholar 

  • Zhang, Z. 1996b. On the epipolar geometry between two images with lens distortion. International Conferences on Pattern Recognition, Vienna, Austria, Vol. I, pp. 407-411.

    Article  Google Scholar 

  • Zhang, Z. 1996c. Parameter estimation techniques: A tutorial with application to conic fitting. Image and Vision Computing, 15(1):59-76, 1997. Also INRIA Research Report No. 2676, Oct. 1995.

    Article  Google Scholar 

  • Zhang, Z. and Faugeras, O.D. 1992. 3D Dynamic Scene Analysis: A Stereo Based Approach. Springer: Berlin, Heidelberg.

    Google Scholar 

  • Zhang, Z., Deriche, R., Luong, Q.-T., and Faugeras, O. 1994. A robust approach to image matching: Recovery of the epipolar geometry. In Proc. International Symposium of Young Investigators on Information\Computer\Control, Beijing, China, pp. 7-28.

  • Zhang, Z., Deriche, R., Faugeras, O., and Luong, Q.-T. 1995a. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence Journal, 78:87-119.

    Article  Google Scholar 

  • Zhang, Z., Faugeras, O., and Deriche, R. 1995b. Calibrating a binocular stereo through projective reconstruction using both a calibration object and the environment. In Proc. Europe-China Workshop on Geometrical Modelling and Invariants for Computer Vision, R. Mohr and C. Wu (Eds.), Xi'an, China, pp. 253-260. Also appeared in Videre: A Journal of Computer Vision Research, 1(1):58-68, Fall 1997.

  • Zhang, Z., Luong, Q.-T., and Faugeras, O. 1996. Motion of an uncalibrated stereo rig: Self-calibration and metric reconstruction. IEEE Trans. Robotics and Automation, 12(1):103-113.

    Article  Google Scholar 

  • Zhuang, X., Wang, T., and Zhang, P. 1992. A highly robust estimator through partially likelihood function modeling and its application in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(1):19-34.

    Article  Google Scholar 

  • Zisserman, A. 1992. Notes on geometric invariants in vision. BMVC92 Tutorial.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z. Determining the Epipolar Geometry and its Uncertainty: A Review. International Journal of Computer Vision 27, 161–195 (1998). https://doi.org/10.1023/A:1007941100561

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007941100561

Navigation