Skip to main content
Log in

Comparison of Extended Jacobian and Lagrange Multiplier Based Methods for Resolving Kinematic Redundancy

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Several methods have been proposed in the past for resolving the control of kinematically redundant manipulators by optimizing a secondary criterion. The extended Jacobian method constrains the gradient of this criterion to be in the null space of the Jacobian matrix, while the Lagrange multiplier method represents the gradient as being in the row space. In this paper, a numerically efficient form of the Lagrange multiplier method is presented and is compared analytically, computationally, and operationally to the extended Jacobian method. This paper also presents an improved method for tracking algorithmic singularities over previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baillieul, J.: Kinematic programming alternatives for redundant manipulators, in: 1985 IEEE Int. Conf. Robotics Automat., St. Louis, 1985, pp. 722–728.

  2. Baillieul, J.: Avoiding obstacles and resolving kinematic redundancy, in: 1986 IEEE Int. Conf. Robotics Automat., San Francisco, 1986, pp. 1698–1704.

  3. Baker, D. and Wampler, C. W.: On the inverse kinematics of redundant manipulators, Int. J. Robotics Res. 7(1988), 3–21.

    Google Scholar 

  4. Basavaraj, U. and Duffy, J.: End-effector motion capability of serial manipulators, Int. J. Robotics Res. 12(1993), 132–145.

    Google Scholar 

  5. Chan, T. F. and Dubey, R.: A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators, IEEE Trans. Robotics Automat. 11(1995), 286–292.

    Google Scholar 

  6. Chang, P. H.: A closed-form solution for the inverse kinematics of robot manipulators with redundancy, IEEE J. Robotics Automat. RA-35) (1987), 393–403.

    Google Scholar 

  7. Chirikjian, G. and Burdick, J.: Kinematically optimal hyper-redundant manipulator configurations, IEEE Trans. Robotics Automat. 11(1995), 794–806.

    Google Scholar 

  8. Fu, K. S., Gonzalez, R. C., and Lee, C. S. G.: Robotics: Control, Sensing, Vision, and Intelligence, McGraw-Hill, New York, 1987.

    Google Scholar 

  9. Klein, C., Chu-Jenq, C., and Ahmed, S.: A new formulation of the the extended Jacobian method and its use in mapping algorithmic singularities for kinematically redundant manipulators, IEEE Trans. Robotics Automat. RA-11(1995), 50–55.

    Google Scholar 

  10. Klein, C., Chu-Jenq, C., and Kittivatcharapong, S.: Testing iterative robotic algorithms by their rate of convergence, IEEE Trans. Robotics Automat. 7(1991), 686–687.

    Google Scholar 

  11. Klein, C. and Huang, C.: Review of pseudoinverse control for use with kinematically redundant manipulators, IEEE Trans. Systems Man Cybernet. SMC-13(1983), 245–250.

    Google Scholar 

  12. Klein, C. and Kee, K. B.: The nature of drift in pseudoinverse control of kinematically redundant manipulators, IEEE J. Robotics Automat. 5(1989), 231–234.

    Google Scholar 

  13. Liegeois, A.: Automatic supervisory control of the configuration and behavior of multibody mechanisms, IEEE Trans. Systems Man Cybernet. SMC-7(1977), 868–871.

    Google Scholar 

  14. Maciejewski, A. and Klein, C.: Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments, Int. J. Robotics Res. 4(1985), 109–117.

    Google Scholar 

  15. Nakamura, Y., Hanafusa, H., and Yoshikawa, T.: Task-priority based redundancy control of robot manipulators, Int. J. Robotics Res. 6(1987), 3–15.

    Google Scholar 

  16. Nenchev, D. N.: Redundancy resolution, J. Robotic Systems 6(6) (1989), 769–798.

    Google Scholar 

  17. Roberts, R. and Maciejewski, A.: Repeatable generalized inverse control strategies for kinematically redundant manipulators, IEEE Trans. Aut. Control 38(1993), 689–699.

    Google Scholar 

  18. Seraji, H.: Motion control of 7-DOF arms: the configuration control approach, IEEE Trans. Robotics Automat. 9(1993), 125–139.

    Google Scholar 

  19. Walker, I. D.: Impact configurations and measures for kinematically redundant and multiple arm systems, IEEE Trans. Robotics Automat. 10(1994), 670–683.

    Google Scholar 

  20. Whitney, D. E.: Resolved motion rate control of manipulators and human prostheses, IEEE Trans. Man-Machine Systems MMS-10(1969), 47–53.

    Google Scholar 

  21. Yoshikawa, T.: Manipulability of robotic mechanisms, Int. J. Robotics Res. 4(1985), 3–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, C.A., Chu, LC. Comparison of Extended Jacobian and Lagrange Multiplier Based Methods for Resolving Kinematic Redundancy. Journal of Intelligent and Robotic Systems 19, 39–54 (1997). https://doi.org/10.1023/A:1007941331202

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007941331202

Navigation