Skip to main content
Log in

Abstract

Techniques for distribution of optical signals, both free space and guided, within electronic systems has been extensively investigated over more than a decade. Particularly at the lower levels of packaging (intra-chip and chip-to-chip), miniaturized optical elements including diffractive optics and micro-refractive optics have received considerable attention. In the case of optical distribution of data, there is the need for a source of optical power and a need for a means of modulating the optical beam to achieve data communications. As the number of optical data interconnections increases, the technical challenges of providing an efficient realization of the optical data interconnections also increases. Among the system signals which might be transmitted optically, clock distribution represents a substantially simplified problem from the perspective of the optical sources required. In particular, a single optical source, modulated to provide the clock signal, replaces the multitude of optical sources/modulators which would be needed for extensive optical data interconnections. Using this single optical clock source, the technical problem reduces largely to splitting of the optical clock beam into a multiplicity of optical clock beams and distribution of the individual clocks to the several portions of the system requiring synchronized clocks. The distribution problem allows exploitation of a wide variety of passive, miniaturized optical elements (with diffractive optics playing a substantial role). This article reviews many of the approaches which have been explored for optical clock distribution, ranging from optical clock distribution within lower levels of the system packaging hierarchy through optical clock distribution among separate boards of a complex system. Although optical clock distribution has not yet seen significant practical application, it is evident that the technical foundation for such clock distribution is well established. As clock rates increase to 1 GHz and higher, the practical advantages of optical clock distribution will also increase, limited primarily by the cost of the optical components used and the manufacturability of an overall electronic system in which optical clock distribution has been selectively inserted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ota, R.C. Miller, S.R. Forrest, D.A. Kaplan, C.W. Seabury, R.B. Huntington, J.G. Johnson, and J.R. Potopowicz, “Twelvechannel individually addressable InGaAs/InP p-i-n photodiode and InGaAsP/InP LED arrays in a compact package,” IEEE J. Lightwave Technol., Vol. 5, No. 4, pp. 1118-1122, 1987.

    Article  Google Scholar 

  2. Y.M. Wong et al., “Technology development of a high-density 32 channel 16 Gb/s optical data link for optical interconnections for the optoelectronic technology consortium (OETC),” IEEE J. Lightwave Technol., Vol. 13, No. 6, pp. 995-1016, 1995.

    Article  Google Scholar 

  3. H. Karstensen, C. Hanke, M. Honsberg, J.-R. Kropp, J. Wieland, M. Blaser, P. Weger, and J. Popp, “Parallel optical interconnection for uncoded data transmission with 1 Gb/sec-per-channel capacity, high dynamic range, and low power consumption,” IEEE J. Lightwave Technol., Vol. 13, No. 6, pp. 1017-1030, 1995.

    Article  Google Scholar 

  4. Special issue: Diffractive Optics: Design, Fabrication, and Applications, Appl. Optics, Vol. 32, No. 14, 1993.

  5. Special issue: Micro-Optics, Optical Eng., Vol. 33, No. 11, pp. 3504-3669, 1994.

  6. S.K. Tewksbury, “Interconnections within microelectronic systems,” in Microelectronic System Interconnections: Performance and Modeling, S.K. Tewksbury (Ed.), IEEE Press, Piscataway, pp. 1-49, 1994.

    Google Scholar 

  7. S.K. Tewksbury (Ed.), Microelectronic System Interconnections: Performance and Modeling, IEEE Press, Piscataway, NJ, 1994.

    Google Scholar 

  8. J.W. Goodman, F.I. Leonberger, S.-Y. Kung, and R.A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE, Vol. 72, pp. 850-866, 1984.

    Article  Google Scholar 

  9. Special issue: Optical Interconnects, Appl. Opt., Vol. 29, pp. 1067-1177, 1990.

  10. D.B. Clymer and J.W. Goodman, “Optical clock distribution to silicon chips,” Opt. Eng., Vol. 25, pp. 1103-1108, 1986.

    Article  Google Scholar 

  11. L.A. Bergman, W.H. Wu, A.R. Johnston, R. Nixon, S.C. Esener, C.C. Guest, P. Yu, T.J. Brabik, M. Feldman, and S.H. Lee, “Holographic optical interconnects for VLSI,” Opt. Eng., Vol. 25, pp. 1109-1118, 1996.

    Google Scholar 

  12. R.K. Kostuk, L. Wang, and Y.-T. Huang, “Optical clock distribution with holographic optical elements,” in Real-Time Signal Processing XI, J.P. Letellier (Ed.), Proc. SPIE, Vol. 977, pp. 24- 36, 1988.

  13. S. Koh, H.W. Carter, and J.T. Boyd, “Synchronous global clock distribution on multichip modules using optical waveguides,” Optical Eng., Vol. 33, No. 5, pp. 1587-1595, 1994.

    Article  Google Scholar 

  14. A. Himeno, H. Terui, and M. Kobayashi, “Loss measurement and analysis of high-silica reflection bendingwaveguides,” IEEE J. Lightwave Technol., Vol. 6, No. 1, pp. 41-46, 1988.

    Article  Google Scholar 

  15. F. Lin, E.M. Strzelecki, and T. Jannson, “Optical multiplanar VLSI interconnects based on multiplexed waveguide holograms,” Appl. Optics, Vol. 29, No. 8, pp. 1126-1133, 1990.

    Article  Google Scholar 

  16. F. Lin, C. Nugyen, J. Zhu, and B.M. Hendrickson, “Dispersion effects in a single-mode holographic waveguide interconnect system,” Appl. Optics, Vol. 31, No. 32, pp. 6831-6835, 1992.

    Article  Google Scholar 

  17. S.J. Walker, J. Jahns, L. Li, W.M. Mansfield, P. Mulgrew, D.M. Tennant, C.W. Roberts, L.C. West, and N.K. Ailawadi, “Design and fabrication of high-efficiency beam splitters and beam de-flectors for integrated planar micro-optic systems,” Appl. Optics, Vol. 32, No. 14, pp. 2494-2501, 1993.

    Article  Google Scholar 

  18. T. Kubota and M. Takeda, “Array illuminator using grating couplers,” Optics Letts., Vol. 14, No. 12, pp. 651-652, 1989.

    Article  Google Scholar 

  19. J.M. Miller, M.R. Tagizadeh, J. Turunen, and N. Ross, ”Multilevel-grating array generators: Fabrication error analysis and experiments,” Appl. Optics, Vol. 32, No. 14, pp. 2519-2525, 1993.

    Article  Google Scholar 

  20. E. Sidick, A. Knoesen, and J.N. Mait, “Design and rigorous analysis of high-efficiency array generators,” Appl. Optics, Vol. 32, No. 14, pp. 2599-2605, 1993.

    Article  Google Scholar 

  21. S.K. Patra, J. Ma, V.H. Ozguz, and S.H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Optical Eng., Vol. 33, No. 5, pp. 1561-1570, 1994.

    Article  Google Scholar 

  22. J. Schwider, W. Stork, N. Streibl, and R. Völkel, “Possibilities and limitations of space-variant holographic optical elements for switching networks and general interconnects,” Appl. Optics, Vol. 31, No. 35, pp. 7403-7410, 1992.

    Article  Google Scholar 

  23. K.-H. Brenner and F. Sauer, “Diffractive-reflective optical interconnects,” Appl. Optics, Vol. 27, No. 20, pp. 4251-4254, 1988.

    Article  Google Scholar 

  24. E. Bradley, P.K.L. Yu, and A.R. Johnston, “System issues relating to laser diode requirements for VLSI holographic optical interconnections,” Optical Eng., Vol. 28, No. 3, pp. 201-211, 1989.

    Article  Google Scholar 

  25. J. Jahns, Y.H. Lee, C.A. Burrus, Jr., and J. Jewell, “Optical interconnects using top-surface-emitting microlasers and planar optics,” Appl. Optics, Vol. 31, No. 5, pp. 592-597, 1992.

    Article  Google Scholar 

  26. G.P. Behrmann and J.P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Optics, Vol. 32, No. 14, pp. 2483-2489, 1993.

    Article  Google Scholar 

  27. J. Schwider, “Achromatic design of holographic optical interconnects,” Optical Eng., Vol. 35, No. 3, pp. 826-831, 1996.

    Article  Google Scholar 

  28. T.M. Shen, “Timing jitter in semiconductor lasers under pseudorandom word modulation,” IEEE J. Lightwave Technol., Vol. 7, pp. 1394-1399, 1989.

    Article  Google Scholar 

  29. A. Weber, W. Ronghan, E. Bottcher, M. Schell, and D. Bimberg, ”Measurement and simulation of the turn-on delay time jitter in gain-switched semiconductor lasers,” IEEE J. Quantum Electronics, Vol. 28, pp. 441-446, 1992.

    Article  Google Scholar 

  30. V.N. Morozov and W. Thomas Cathey, “Practical speed limits of free-space global holographic interconnects: Time skew, jitter and turn-on delay,” Appl. Optics, Vol. 33, No. 8, pp. 1380-1390, 1994.

    Article  Google Scholar 

  31. P. Cinato and K.C. Young, Jr., “Optical interconnections within multichip modules,” Optical Eng., Vol. 32, No. 4, pp. 852-860, 1993.

    Article  Google Scholar 

  32. S.K. Tewksbury, Wafer Level System Integration: Implementation Issues, Kluwer Academic Publishers, Boston, 1989.

    Book  Google Scholar 

  33. S.K. Tewksbury and L.A. Hornak, “Multichip modules: A platform for optical interconnections within microelectronic systems,” Int. J. Optoelectronics, Devices, and Technologies, MITA Press, Japan, Vol. 9, No. 1, pp. 55-80, 1994.

    Google Scholar 

  34. L.A. Hornak and S.K. Tewksbury, “On the feasibility of throughwafer optical interconnects for hybrid wafer-scale integrated architectures,” IEEE Trans. Elect. Dev., Vol. 34, No. 7, pp. 1557- 1563, 1987.

    Article  Google Scholar 

  35. D.S. Wills, W.S. Lacy, C. Camperi-Ginestet, B. Buchanan, H.H. Cat, S. Wildinson, M. Lee, N.M. Jokerst, and M.A. Brooke, “A three-dimensional high-throughput architecture using throughwafer optical interconnect,” IEEE J. Lightwave Technol.,Vol. 13, No. 6, pp. 1085-1092, 1995.

    Article  Google Scholar 

  36. M.J. Wale et al., “A new self-aligned technique for the assembly of integrated optical devices with optical fiber and electronic interfaces,” Proc. ICIC '89, paper ThA19-7, p. 368, 1989.

  37. M.J. Goodwin, A.J. Mosely, M.G. Kearly, R.C. Morris, D.J. Groves-Kirkby, J. Thompson, R.C. Goodfellow, and I. Bennion, “Optoelectronic component arrays for optical interconnection of circuits and systems,” IEEE J. Lightwave Technol., Vol. 9, No. 12, pp. 1639-1645, 1991.

    Article  Google Scholar 

  38. R. Selvaraj, H.T. Lin, and J.F. McDonald, “Integrated optical waveguides in polyimide for wafer scale integration,” IEEE J. Lightwave Technol., Vol. 6, pp. 1034-1037, 1988.

    Article  Google Scholar 

  39. J.C. Lyke, R. Wojnarowski, G.A. Forman, E. Bernard, R. Saia, and B. Gorowitz, “Three dimensional patterned overlay high density interconnect (HDI) technology,” Journal of Microelectronic Systems Integration, Vol. 1, No. 2, pp. 99-141, 1993.

    Google Scholar 

  40. R.S. Beech and A.K. Ghosh, “Optimization of alignability in integrated planar-optical interconnect packages,” Appl. Optics, Vol. 32, No. 29, pp. 5741-5749, 1993.

    Article  Google Scholar 

  41. J. Jahns and R.A. Brumback, “Integrated-optical split-and-shift module based on planar optics,” Opt. Commun.,Vol. 76, pp. 318- 323, 1990.

    Article  Google Scholar 

  42. F. Sauer, “Fabrication of diffractive-reflective optical interconnects for infrared operation based on total internal reflection,” Appl. Optics, Vol. 28, pp. 386-388, 1989.

    Article  Google Scholar 

  43. J. Jahns and A. Huang, “Planar integration of free-space optical components,” Appl. Optics, Vol. 28, pp. 1602-1605, 1989.

    Article  Google Scholar 

  44. H.J. Haumann, H. Kobolla, F. Sauer, J. Schmidt, J. Schwider, W. Stork, N. Streibl, and R. Völkel, “Optoelectronic interconnections based on a light-guiding plate with holographic coupling elements,” Opt. Eng., Vol. 30, pp. 1620-1623, 1991.

    Article  Google Scholar 

  45. L.A. Hornak, S.K. Tewksbury, J.C. Barr, W.D. Cox, and K.S. Brown, “Optical interconnections and cryoelectronics: Complimentary enabling technologies for emerging mainstream systems,” SPIE Photonics West Symposium, Optical Interconnections III Conference, San Jose, CA, Feb. 1995.

  46. J.W. Parker, “Optical interconnection for advanced processor systems: A review of the ESPRIT II OLIVES program,” IEEE J. Lightwave Technol., Vol. 9, pp. 1764-1773, 1991.

    Article  Google Scholar 

  47. Y. Yamanaka, K. Yoshihara, I. Ogura, T. Numai, K. Kasahara, and Y. Ono, “Free-space optical bus using cascaded verticalto-surface transmission electrophotonic devices,” Appl. Optics, Vol. 31, No. 23, pp. 4676-4681, 1992.

    Article  Google Scholar 

  48. A. Guha, J. Briston, C. Sullivan, and A. Husain, “Optical interconnects for massively parallel architectures,” Appl. Optics, Vol. 29, pp. 1077-1093, 1990.

    Article  Google Scholar 

  49. K. Kasahara, Y. Tahiro, N. Hamao, M. Sugimoto, and T. Yanese, “Double heterostructure optoelectronic switch as a dynamic memory with low-power consumption,” Appl. Phys. Lett., Vol. 52, pp. 679-681, 1988.

    Article  Google Scholar 

  50. K. Rastani and W.M. Hubbard, “Alignment and fabrication tolerances of planar gratings for board-to-board optical interconnects,” Appl. Optics, Vol. 31, pp. 4863-4870, 1992.

    Article  Google Scholar 

  51. “High-speed optical interconnects for digital systems,” Lincoln Labs. Journal, Vol. 4, pp. 31-43, 1991.

  52. D.Z. Tsang, “Free-space board-to-board optical interconnections” in Optical Enhancements to Computing Technology, J.A. Heff (Ed.), SPIE Vol. 1563, pp. 66-71, 1991.

  53. D.Z. Tsang and T.J. Goblick, “Free-space optical interconnection technology in parallel processing systems,” Optical Eng., Vol. 33, No. 5, pp. 1524-1531, 1994.

    Article  Google Scholar 

  54. C.T. Sullivan, “Optical waveguide circuits for printed wire-board interconnections,” Proc. SPIE, Optoelectronic Materials, Devices and Packaging, Vol. 994, p. 92, 1988.

    Article  Google Scholar 

  55. R.C. Kim, E. Chen, and F. Lin, “An optical holographic backplane interconnect system,” IEEE J. Lightwave Technol., Vol. 9, pp. 1650-1656, 1991.

    Article  Google Scholar 

  56. S. Natarajan, C. Zhao, and R.T. Chen, “Bi-directional optical backplane bus for general purpose multiprocessor board-toboard optoelectronic interconnects,” IEEE J. Lightwave Technol., Vol. 13, No. 6, pp. 1031-1040, 1995.

    Article  Google Scholar 

  57. R.K. Kostuk, J.-H. Yeh, and M. Fink, “Distributed optical data bus for board-level interconnections,” Appl. Optics, Vol. 32, No. 26, pp. 5010-5021, 1993.

    Article  Google Scholar 

  58. R.K. Kostuk, “Simulation of board-level free-space optical interconnects for electronic processing,” Appl. Optics, Vol. 31, No. 14, pp. 2438-2445, 1992.

    Article  Google Scholar 

  59. B. Dheodt, P. De Dobbalaer, J. Blondelle, P. Van Daile, P. Demester, and R. Baets, “Monolithic integration of diffractive lenses with LED arrays for board-to-board free space optical interconnect,” IEEE J. Lightwave Technol., Vol. 13, No. 6, pp. 1065-1073, 1995.

    Article  Google Scholar 

  60. R.S. Beech and A.K. Ghosh, “Optimization of alignability in integrated planar-optical interconnect packages,” Appl. Optics, Vol. 32, No. 29, pp. 5741-5749, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewksbury, S.K., Hornak, L.A. Optical Clock Distribution in Electronic Systems. The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 16, 225–246 (1997). https://doi.org/10.1023/A:1007951426624

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007951426624

Keywords

Navigation