Skip to main content
Log in

Abstract

A class of Finite Impulse Response (FIR) filtering algorithms based either on short Fast Fourier Transforms (FFT) or on short length FIR filtering algorithms was recently proposed. Besides the significant reduction of the arithmetic complexity, these algorithms present some characteristics which make them useful in many applications, namely a small delay processing (independent on the FIR filter length) as well as a multiply-add based computational structure. These algorithms are presented in a unified framework, thus allowing an easy combination of any of them. However, a remaining difficulty concerns the implementation of the fast algorithms on Digital Signal Processors (DSP), given the DSP finite resources (number of pointers, registers and memory), while keeping as much as possible the improvement brought by the reduction of the arithmetic complexity. This paper provides an efficient implementation methodology, by organizing the algorithm in such a way that the memory data access is optimized on a DSP. As a result, our implementation requires a constant number of pointers whatever the algorithm combination. This knowledge is used in a DSP code generator which is able to select the appropriate algorithm meeting the application constraints, as well as to generate automatically an optimized assembly code, using macro-instructions available in a DSP-dependent library. An improvement of more than 50% in terms of throughput (number of machine cycles per point) compared to the implementation of the direct convolution is generally achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh C. Agarwal and Charles S. Burrus, “Fast onedimensional digital convolution by multidimentional techniques,” IEEE Trans. on Acoust. Speech and Signal Processing, Vol. 22, No. 1, pp. 1-10, Feb. 1974.

    Article  MathSciNet  Google Scholar 

  2. R.C. Agarwal and C.S. Burrus, “Number theoric transforms to implement fast digital convolution,” IEEE Trans. Acoust. Speech, Signal Processing, Vol. 63, No. 4, April 1975.

  3. R.C. Agarwal and J.W. Cooley, “New algorithms for digital convolution,” IEEE Trans. on Acoust. Speech and Signal Processing, Vol. 25, No. 5, pp. 392-410, Oct. 1977.

    Article  MATH  Google Scholar 

  4. C.S. Burrus and T.W. Parks, DFT/FFT and Convolution Algorithm, Wiley, New York, 1985.

    Google Scholar 

  5. J.W. Cooley and J.W. Tukey, “An algorithm for the calculation of complex Fourier series,” Math. of. Comput., Vol. 19, pp. 297- 301, April 1965.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Nussbaumer, “Nouveaux algorithmes de transformée de Fourier rapide,” Traitement du signal, l'onde électrique, Vol. 59, No. 6-7, 1979 (in French).

  7. P. Duhamel and M. Vetterli, “Cyclic convolution of real sequences: Hartley versus Fourier and new schemes,” IEEE Proc. ICASSP, Tokyo, Japan, April 8-11, 1986, pp. 6.5.1-6.5.4.

  8. P. Duhamel and M. Vetterli, “Improved Fourier and Hartley transform algorithms: Application to cyclic convolution of real data,” IEEE Trans. Acous. Speech, Signal Processing, Vol. 35, No. 6, pp. 818-824, June 1987.

    Article  Google Scholar 

  9. P. Duhamel and M. Vetterli, “Fast Fourier Transforms: Atutorial review and a state of the art,” IEEE Trans. Acous. Speech, Signal Processing, Vol. 19, pp. 259-299, 1990.

    MathSciNet  MATH  Google Scholar 

  10. R.E. Blahut, Fast Algorithms for Signal Processing, Addison-Wesley, Reading, MA, 1985.

    MATH  Google Scholar 

  11. Winograd, “Arithmetic complexity of computation,” CBMSNSF Regional Conf. Series in Applied Mathematics, SIAM Publications, No. 33, 1980.

  12. H.K. Kwan and M.T. Tsim, “High speed 1-D FIR digital filtering architectures using polynomial convolution,” Proc. ICASSP Dallas 87, USA, pp. 1863-1866.

  13. P. Duhamel, Z.J. Mou, and J. Benesty, “Une représentation unifiée du filtrage rapide fournissant tous les intermédiaires entre traitements temporels et fréquentiels,” douzième colloque Gretsi-Juan-les-pins France, pp. 37-40 (in French), June 1989.

  14. Z.J. Mou and P. Duhamel, “A unified approach to the fast FIR filtering algorithms,” IEEE Proc. ICASSP, pp. 1914-1917, 1988.

  15. Z.J. Mou and P. Duhamel, “Fast FIR filtering: Algorithms and implementations,” Signal Processing, pp. 377-384, December 1987.

  16. Z.J. Mou and P. Duhamel, “Short length FIR filters and their use in fast non recursive filtering,” IEEE Trans. ASSP, 1989.

  17. Z.J. Mou, P. Duhamel, and J. Benesty, “Fast complex FIR filtering algorithms with applications to real FIR and complex LMS filters,” Proc. Eusipco, pp. 549-552, 1990.

  18. A. Zergaïnoh and P. Duhamel, “Implementation and performance of fast FIR filtering algorithms on DSP,” IEEE VLSI Signal Processing VIII, Oct. 16-18, 1995.

  19. R. Meyer, R. Reng, and Schwarz, “Convolution algorithms on DSP processors,” IEEE Proc. ICASSP, 1991, pp. 2193- 2196.

  20. A. Zergaïnoh, P. Duhamel, and J.P. Vidal, “Efficient implementation of composite length fast FIR filtering on the ADSP-2100,” IEEE Proc. ICASSP Adelaïde 94, Australia, pp. 461-464.

  21. A. Zergaïnoh, P. Duhamel, and J.P. Vidal, “Implantation efficace d'algorithmes de filtrage rapide RIF sur ADSP-2100,” Conférence Adéquation Algorithmes Architectures, Greco TDSI, AFCET, SEE, CNET, Grenoble Janvier 94, pp. 85-92.

  22. M. Vetterli, “Running FIR and IIR Filtering using multirate filter bank,” IEEE Trans. on ASSP, Vol. 36, No. 5, pp. 730-738, May 1988.

    Article  MATH  Google Scholar 

  23. D.M.W. Evans, “An improved digit reversal permutation algorithm for fast Fourier and Hartley transforms,” IEEE Trans. Acoustics Speech and Signal Processing, Vol. ASSP-35, No. 8, IEEE CS Press, Los Almitos, Calif., Aug. 1987, pp. 1120- 1125.

    Google Scholar 

  24. A. Zergaïnoh, P. Duhamel, and J.P. Vidal, “DSP implementation of fast FIR filtering algorithm using short FFT's,” IEEE Proc. ISCAS Seattle 1995, pp. 219-222.

  25. P. Duhamel, “A split radix fast Fourier transform,” Ann. Télécomm, Vol. 40, No. 9-10, pp. 418–494, Sept.-Oct. 1985.

    Google Scholar 

  26. Henrik V. Sorensen, Douglas L. Jones, Michael T. Heideman, and C. Sidney Burrus, “Real valued fast fourier transform algorithms,” IEEE Trans. on Acoust. Speech and Signal Processing, Vol. 35, No. 6, pp. 849-863, June 1987.

    Article  Google Scholar 

  27. H. Nussbaumer, Fast Fourier Transform and Convolution Algorithms, Spring-Verlag, 2nd edition, 1982.

  28. Analog Devices, “Digital signal processing applications using the ADSP-2100 familly,” Prentice-Hall, Englewood Cliffs, NJ 07632.

  29. ADSP-21020 User's Manual, 1991 Analog Devices Incorporated.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zergaïnoh, A., Duhamel, P. & Vidal, J.P. Efficient Implementation Methodology of Fast FIR Filtering Algorithms on DSP. The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 16, 81–103 (1997). https://doi.org/10.1023/A:1007968503172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007968503172

Keywords

Navigation