Skip to main content
Log in

Biomorphic Dynamical Networks for Cognition and Control

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Advances in understanding the neuronal code employed by cortical networks indicate that networks of parametrically coupled nonlinear iterative maps, each acting as a bifurcation processing element, furnish a potentially powerful tool for the modeling, simulation, and study of cortical networks and the host of higher-level processing and control functions they perform. Such functions are central to understanding and elucidating general principles on which the design of biomorphic learning and intelligent systems can be based. The networks concerned are dynamical in nature, in the sense that they “compute” not only with static (fixed-point) attractors but also with dynamic (periodic and chaotic) attractors. As such, they compute with diverse attractors, and utilize transitions (bifurcation) between attractors and transient chaos to carry out the functions they perform. An example of a dynamical network, a parametrically coupled net of logistic processing elements, is described and discussed together some of its behavioural attributes that are relevant to elucidating the possible role for coherence, bifurcation, and chaos in higher-level brain functions carried out by cortical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeles, M.: 1982, Local Cortical Circuits, Springer, New York. Also, Corticonics: Neural Circuits of the Cerebral Cortex, Cambridge Univ. Press, NY, 1991.

    Google Scholar 

  2. Annios, P. A. et al.: 1970, J. Theoretical Biology 26, 121–148.

    Google Scholar 

  3. Bertille, J. M. and Perez, J. C.: 1990, in: Proc. IJCNN'90, L. Erlbaum Associates Publishers, Hillsdale, NJ, pp. 361–364.

    Google Scholar 

  4. Bosch, M., Bauer, R., and Eckhorn, R.: 1995, European Journal of Neuroscience 7, 86–95.

    Google Scholar 

  5. Crutchfield, J. and Kaneko, K.: 1987, in: Directions in Chaos, Vol. 1, World Scientific Publishing Co., Singapore, pp. 272–353.

    Google Scholar 

  6. Eckhorn, R.: 1988, Biological Cybernetics 60, 121–130. JINTCT6.tex; 18/12/1997; 15:21; v.7; p.10

    Google Scholar 

  7. Edelman, G. M.: 1987, Neural Darwinsim: The Theory of Neuronal Group Selection, Basic Books Inc. Publishers, New York.

    Google Scholar 

  8. Engel, A. K., König, P., Kreiter, A. K., and Singer, W.: 1991, Proc. National Academy Sciences USA 88, 6048–6052.

    Google Scholar 

  9. Engel, A. K., König, P., Kreiter, A. K., and Singer, W.: 1991, Science 252, 1177–1179.

    Google Scholar 

  10. Farhat, N. and Hernandez, E. del Moral: 1996, Recurrent nets with recursive processing elements: Paradigm for dynamical computing, in: SPIE, Vol. 2324, SPIE, Bellingham, Washington, pp. 158–170.

    Google Scholar 

  11. Farhat, N. and Hernandez, E. del Moral: 1995, in: From Natural to Artificial Neural Computation, Springer, Berlin, pp. 215–222.

    Google Scholar 

  12. Farhat, N., Lin, S.-Y., and Eldefrawy, M.: 1994, Complexity and chaotic dynamics in a spiking neuron embodiment, in: Adaptive Computing, Mathematics, Electronics, and Optics, SPIE, Bellingham, Washington, pp. 77–88.

    Google Scholar 

  13. Freeman, W. J.: 1995, Societies of Brains, LEA Associates Publishers, Hillsdale, NJ.

    Google Scholar 

  14. Gray, C. M. et al.: 1989, Nature 338, 334–337.

    Google Scholar 

  15. Harth, E. M. et al.: 1970, J. Theoretical Biology 26, 93–120.

    Google Scholar 

  16. Hilborn, R. C.: 1994, Chaos and Nonlinear Dynamics, Oxford Univ. Press, New York.

    Google Scholar 

  17. Kaneko, K.: 1993, in: K. Kaneko (ed.), Theory and Applications of Coupled Map Lattices, Wiley, New York, pp. 1–49.

    Google Scholar 

  18. Marlsburg, von der C.: 1981, The correlation theory of brain functions, Internal Report 81–2, Max-Plank Institute for Biophysical Chemistry, Götingan, FRG.

    Google Scholar 

  19. Marlsburg, von der C.: 1986, Biological Cybernetics 54, 29–40.

    Google Scholar 

  20. Murthy, V. N. and Fetz, E. E.: 1992, Proc. National Academy of Sciences, USA 89, 5670–5674.

    Google Scholar 

  21. Perez, J. C. and Bertille, J. M.: 1989, in: Proc. INNS First Annual Meeting, Boston, September 1989, p. 121.

  22. Singer, W.: 1993, Annual Review of Physiology 55, 349–374.

    Google Scholar 

  23. Usher, M., Schuster, H. G., and Neibur, E.: 1993, Neural Computation 5, 370–586.

    Google Scholar 

  24. Vreeswijk, van C. and Sompolinski, H.: 1976, Science 274, 1724–1726.

    Google Scholar 

  25. Wennekers, T. and Pasemann, F.: 1996, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 6, 2055–2067.

    Google Scholar 

  26. Wennekers, T., Sommer, F., and Palm, G.: 1995, in: H. Hermann, D. Wolf and E. Pöppel (eds), Supercomputing in Brain Research: From Tomography to Neural Networks, World Scientific, Singapore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhat, N.H. Biomorphic Dynamical Networks for Cognition and Control. Journal of Intelligent and Robotic Systems 21, 167–177 (1998). https://doi.org/10.1023/A:1007989607552

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007989607552

Navigation