Skip to main content
Log in

A branch-and-bound method for optimal atom-type assignment in de novo ligand design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

This paper investigates a computational procedure for the determination of the atom types on the vertices of a molecular skeleton to optimize interaction with the receptor site whilst maintaining a synthetically reasonable structure. The connectivity of the skeleton is analysed and appropriate atom types are compiled for each vertex. Receptor ionization and conformational states are generated by varying the positions of hydrogen atoms and electron lone pairs in the carboxyl, rotatable hydroxyl and amino groups. The structure is divided into small non-overlapping substructures. Atom types are assigned exhaustively onto each of the substructures using a depth-first search method; chemical rules are applied to reject unacceptable atom combinations early on. An empirical interaction score is calculated and the representatives of each partial structure are stored in ascending order according to their scores. The branch-and-bound procedure is then used to find the structures with the lowest scores. The method is illustrated using five protein–ligand complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slater, P.E. and Timms, D., J. Mol. Graph., (1993) 248.

  2. Verlinde, C.L.M.J. and Hol, W.G.J., Structure, 2 (1994) 577.

    Google Scholar 

  3. Lewis, R.A. and Leach, A.R., J. Comput.-Aided Mol. Design, 8 (1994) 467.

    Google Scholar 

  4. Lewis, R.A. and Dean, P.M., Proc. R. Soc. London, B236 (1989) 125.

    Google Scholar 

  5. Lewis, R.A. and Dean, P.M., Proc. R. Soc. London, B236 (1989) 141.

    Google Scholar 

  6. Todorov, N.P. and Dean, P.M., J. Comput.-Aided Mol. Design, 11 (1997) 175.

    Google Scholar 

  7. Chan, S.L., Chau, P.-L. and Goodman, J.M., J. Comput.-Aided Mol. Design, 6 (1992) 461.

    Google Scholar 

  8. Nakamura, H., Komatsu, K., Nakagawa, S. and Umeyana, H., J. Mol. Graph., 3 (1985) 2.

    Google Scholar 

  9. Chau, P.-L. and Dean, P.M., J. Comput.-Aided Mol. Design, 8 (1994) 513.

    Google Scholar 

  10. Chau, P.-L. and Dean, P.M., J. Comput.-Aided Mol. Design, 8 (1994) 527.

    Google Scholar 

  11. Chau, P.-L. and Dean, P.M., J. Comput.-Aided Mol. Design, 8 (1994) 545.

    Google Scholar 

  12. Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 341.

    Google Scholar 

  13. Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 351.

    Google Scholar 

  14. Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 359.

    Google Scholar 

  15. Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 448.

    Google Scholar 

  16. Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 457.

    Google Scholar 

  17. Chau, P.-L. and Dean, P.M., J. Comput.-Aided Mol. Design, 6 (1992) 385.

    Google Scholar 

  18. Chau, P.-L. and Dean, P.M., J. Comput.-Aided Mol. Design, 6 (1992) 397.

    Google Scholar 

  19. Chau, P.-L. and Dean, P.M., J. Comput.-Aided Mol. Design, 6 (1992) 407.

    Google Scholar 

  20. Gillet, V., Johnson, A.P., Mata, P., Sike, S. and Zsoldos, Z., J. Comput.-Aided Mol. Design, 7 (1993) 127.

    Google Scholar 

  21. Gillet, V., Newell, W., Mata, P., Myatt, G., Sike, S., Zsoldos, Z. and Johnson, A.P., J. Comput.-Aided Mol. Design, 7 (1993) 127.

    Google Scholar 

  22. Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 243.

    Google Scholar 

  23. Gray, N.A.B., Computer-Assisted Structure Elucidation, Chapter XI, pp. 399–455, John Wiley and Sons, New York, NY, 1986.

    Google Scholar 

  24. Morley, S.D., Abraham, R.J., Haworth, I.S., Jackson, D.E., Saunders, M.R. and Vinter, J.G., J. Comput.-Aided Mol. Design, 5 (1991) 475.

    Google Scholar 

  25. Nilsson, N.J., Principles of Artificial Intelligence, Springer-Verlag, Berlin, 1982.

    Google Scholar 

  26. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  27. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  28. Marquart, M., Walter, J., Deisenhofer, J., Bode, W., Huber, R., Acta Crystallogr. B, 39 (1983) 480.

    Google Scholar 

  29. Mares-Guia, M. and Shaw, E., J. Biol. Chem., 240 (1965) 1579.

    Google Scholar 

  30. Cowan, S.W., Newcomer, M.E. and Jones, T.A., Proteins, 8 (1990) 44.

    Google Scholar 

  31. Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J., J. Biol. Chem., 257 (1982) 13650.

    Google Scholar 

  32. Matthews, B.W., Acc. Chem. Res., 21 (1988) 333.

    Google Scholar 

  33. Bone, R., Vacca, J.P., Anderson, P.S. and Holloway, M.K., J. Am. Chem. Soc., 113 (1991) 9382.

    Google Scholar 

  34. Dean, P.M., In Dean, P.M. (Ed.) Molecular Similarity in Drug Design, pp. 1–23, Blackie Academic and Professional, Cambridge, 1995.

    Google Scholar 

  35. Ihlenfeldt, W.D., Takahashi, Y., Abe, H. and Sasaki, S., J. Chem. Inf. Comput. Sci., 34 (1982) 109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todorov, N., Dean, P. A branch-and-bound method for optimal atom-type assignment in de novo ligand design. J Comput Aided Mol Des 12, 335 (1998). https://doi.org/10.1023/A:1007994827087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007994827087

Navigation