Skip to main content
Log in

Comparison of two implementations of the incremental construction algorithm in flexible docking of thrombin inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A set of 32 known thrombin inhibitors representing different chemical classes has been used to evaluate the performance of two implementations of incremental construction algorithms for flexible molecular docking: DOCK 4.0 and FlexX 1.5. Both docking tools are able to dock 10–35% of our test set within 2 Å of their known, bound conformations using default sampling and scoring parameters. Although flexible docking with DOCK or FlexX is not able to reconstruct all native complexes, it does offer a significant improvement over rigid body docking of single, rule-based conformations, which is still often used for docking of large databases. Docking of sets of multiple conformers of each inhibitor, obtained with a novel protocol for diverse conformer generation and selection, yielded results comparable to those obtained by flexible docking. Chemical scoring, which is an empirically modified force field scoring method implemented in DOCK 4.0, outperforms both interaction energy scoring by DOCK and the Böhm scoring function used by FlexX in rigid and flexible docking of thrombin inhibitors. Our results indicate that for reliable docking of flexible ligands the selection of anchor fragments, conformational sampling and currently available scoring methods still require improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuntz, I.D., Science, 257 (1992) 107.

    Google Scholar 

  2. Kuntz, I.D., Meng, E.C. and Shoichet, B.K., Acc. Chem. Res., 27 (1994) 117.

    Google Scholar 

  3. Charifson, P.S. and Kuntz, I.D., In Charifson, P.S. (Ed.) Practical Application of Computer-Aided Drug Design, Marcel Dekker, New York, NY, 1997, pp. 1–38.

    Google Scholar 

  4. Grootenhuis, P.D.J., Knegtel, R.M.A., Heikoop, J.C. and van Boeckel, C.A.A., In van der Goot (Ed.) Trends in Drug Research II, Elsevier, Amsterdam, 1998, pp. 7–14.

    Google Scholar 

  5. Lorber, D.M. and Shoichet, B.K., Protein Sci., 7 (1998) 938.

    Google Scholar 

  6. Rosenfeld, R., Vajda, S. and DeLisi, Annu Rev. Biophys. Biomol. Struct., 24 (1995) 677.

    Google Scholar 

  7. Lambert, M.H., In Charifson, P.S. (Ed.) Practical Application of Computer-Aided Drug Design, Marcel Dekker, New York, NY, 1997, pp. 243–303.

    Google Scholar 

  8. Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.

    Google Scholar 

  9. Goodsell, D.S., Morris, G.M. and Olson, A.J., J. Mol. Recog., 9 (1996) 1.

    Google Scholar 

  10. Leach, A.R. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 730.

    Google Scholar 

  11. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    Google Scholar 

  12. Makino, S. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1812.

    Google Scholar 

  13. Welch, W., Ruppert, J. and Jain, A.J., Chem. Biol., 3 (1996) 449.

    Google Scholar 

  14. Ewing, T.J.A. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1175.

    Google Scholar 

  15. Rarey, M., Kramer, B. and Lengauer, T., J. Comput.-Aided Mol. Design, 10 (1997) 369.

    Google Scholar 

  16. Kramer, B., Rarey, M. and Lengauer, T., Proteins Struct. Funct. Genet. (Suppl. 1) (1997) 221.

    Google Scholar 

  17. Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 243.

    Google Scholar 

  18. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  19. Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 505.

    Google Scholar 

  20. Böhm, H.-J. and Klebe, G., Angew. Chem., Int. Ed. Engl., 35 (1996) 2588.

    Google Scholar 

  21. Knegtel, R.M.A. and Grootenhuis, P.D.J., In Kubinyi, H., Folkers, G. and Martin, Y. (Eds.) 3D QSAR in Drug Design. Recent Advances, Kluwer, Dordrecht, 1998, pp. 99–114.

    Google Scholar 

  22. Dixon, J.S., Proteins Struct. Funct. Genet. (Suppl. 1) (1997) 198.

    Google Scholar 

  23. Grootenhuis, P.D.J. and Karplus, M., J. Comput.-Aided Mol. Design, 10 (1996) 1.

    Google Scholar 

  24. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.T.J., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  25. Engh, R.A., Brandstetter, H., Sucher, G., Eichinger, A., Baumann, U., Bode, W., Huber, R., Poll, T., Rudolph, R. and von der Saal, W., Structure, 4 (1996) 1353.

    Google Scholar 

  26. Von der Saal, W., Kucznierz, R., Leinert, H. and Engh, R.A., Bioorg. Med. Chem. Lett., 7 (1997) 1283.

    Google Scholar 

  27. Brandstetter, H., Turk, D., Hoeffken, W., Grosse, D., Sturzebecher, J., Martin, P.D., Edwards, B.F.P. and Bode, W., J. Mol. Biol., 226 (1992) 1085.

    Google Scholar 

  28. Banner, D.W. and Hadvary, P., J. Biol. Chem., 266 (1991) 20085.

    Google Scholar 

  29. Bode, W. and Turk, J., Eur. J. Biochem., 193 (1990) 175.

    Google Scholar 

  30. Sadowski, J., Gasteiger, J. and Klebe, G., J. Chem. Inf. Comput. Sci., 34 (1994) 1000.

    Google Scholar 

  31. Rusinko, A., Sheridan, R.P., Nilakantan, R., Haraki, K.S., Bauman, N. and Venkataraghavan, R., J. Chem. Inf. Comput. Sci., 29 (1989) 251.

    Google Scholar 

  32. Gasteiger, J. and Marsili, M., Tetrahedron Lett., 36 (1980) 3219.

    Google Scholar 

  33. McHugh, J., Algorithmic Graph Theory, Prentice-Hall, 1990, pp. 90–114.

  34. Bayada et al., J. Chem. Inf. Comput. Sci., submitted.

  35. Bauknecht, H., Zell, A., Bayer, H., Levi, P., Wagener, M., Sadowski, J. and Gasteiger, J., J. Chem. Inf. Comput. Sci., 36 (1996) 1205.

    Google Scholar 

  36. Grootenhuis, P.D.J. and van Galen, P.J.M., Acta Crystallogr., D51 (1995) 560.

    Google Scholar 

  37. Bursi, R.B. and Grootenhuis, P.D.J., J. Comput.-Aided Mol. Design (1999) in press.

  38. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  39. Ewing, T. (Ed.) DOCK Version 4.0 Manual, Regents of the University of California, San Francisco, CA, 1997.

    Google Scholar 

  40. Kearsley, S.K., Underwood, D.J., Sheridan, R.P. and Miller, M.D., J. Comput.-Aided Mol. Design, 8 (1994) 565.

    Google Scholar 

  41. Miller, M.D., Kearsley, S.K., Underwood, D.J. and Sheridan, R.P., J. Comput.-Aided Mol. Design, 8 (1994) 153.

    Google Scholar 

  42. Knegtel, R.M.A., Kuntz, I.D. and Oshiro, C.M., J. Mol. Biol., 266 (1997) 424.

    Google Scholar 

  43. Todeschini, R., Lasagni, M. and Marengo, E., J. Chemometrics, 8 (1994) 263.

    Google Scholar 

  44. Todeschini, R., Gramatica, P., Provenzani, R. and Marengo, E., Chemometr. Intell. Lab. Syst., 27 (1995) 221.

    Google Scholar 

  45. Todeschini, R. and Gramatica, P., Quant. Struct.-Act. Relat., 16 (1997) 113.

    Google Scholar 

  46. Broto, P., Moreau, G. and Vandycke, C., Eur. J. Med. Chem., 19 (1984) 66.

    Google Scholar 

  47. Broto, P., Moreau, G. and Vandycke, C., Eur. J. Med. Chem., 19 (1984) 79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knegtel, R.M., Bayada, D.M., Engh, R.A. et al. Comparison of two implementations of the incremental construction algorithm in flexible docking of thrombin inhibitors. J Comput Aided Mol Des 13, 167–183 (1999). https://doi.org/10.1023/A:1008014604433

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008014604433

Navigation