Abstract
A set of 32 known thrombin inhibitors representing different chemical classes has been used to evaluate the performance of two implementations of incremental construction algorithms for flexible molecular docking: DOCK 4.0 and FlexX 1.5. Both docking tools are able to dock 10–35% of our test set within 2 Å of their known, bound conformations using default sampling and scoring parameters. Although flexible docking with DOCK or FlexX is not able to reconstruct all native complexes, it does offer a significant improvement over rigid body docking of single, rule-based conformations, which is still often used for docking of large databases. Docking of sets of multiple conformers of each inhibitor, obtained with a novel protocol for diverse conformer generation and selection, yielded results comparable to those obtained by flexible docking. Chemical scoring, which is an empirically modified force field scoring method implemented in DOCK 4.0, outperforms both interaction energy scoring by DOCK and the Böhm scoring function used by FlexX in rigid and flexible docking of thrombin inhibitors. Our results indicate that for reliable docking of flexible ligands the selection of anchor fragments, conformational sampling and currently available scoring methods still require improvement.
Similar content being viewed by others
References
Kuntz, I.D., Science, 257 (1992) 107.
Kuntz, I.D., Meng, E.C. and Shoichet, B.K., Acc. Chem. Res., 27 (1994) 117.
Charifson, P.S. and Kuntz, I.D., In Charifson, P.S. (Ed.) Practical Application of Computer-Aided Drug Design, Marcel Dekker, New York, NY, 1997, pp. 1–38.
Grootenhuis, P.D.J., Knegtel, R.M.A., Heikoop, J.C. and van Boeckel, C.A.A., In van der Goot (Ed.) Trends in Drug Research II, Elsevier, Amsterdam, 1998, pp. 7–14.
Lorber, D.M. and Shoichet, B.K., Protein Sci., 7 (1998) 938.
Rosenfeld, R., Vajda, S. and DeLisi, Annu Rev. Biophys. Biomol. Struct., 24 (1995) 677.
Lambert, M.H., In Charifson, P.S. (Ed.) Practical Application of Computer-Aided Drug Design, Marcel Dekker, New York, NY, 1997, pp. 243–303.
Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.
Goodsell, D.S., Morris, G.M. and Olson, A.J., J. Mol. Recog., 9 (1996) 1.
Leach, A.R. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 730.
Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.
Makino, S. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1812.
Welch, W., Ruppert, J. and Jain, A.J., Chem. Biol., 3 (1996) 449.
Ewing, T.J.A. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1175.
Rarey, M., Kramer, B. and Lengauer, T., J. Comput.-Aided Mol. Design, 10 (1997) 369.
Kramer, B., Rarey, M. and Lengauer, T., Proteins Struct. Funct. Genet. (Suppl. 1) (1997) 221.
Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 243.
Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.
Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 505.
Böhm, H.-J. and Klebe, G., Angew. Chem., Int. Ed. Engl., 35 (1996) 2588.
Knegtel, R.M.A. and Grootenhuis, P.D.J., In Kubinyi, H., Folkers, G. and Martin, Y. (Eds.) 3D QSAR in Drug Design. Recent Advances, Kluwer, Dordrecht, 1998, pp. 99–114.
Dixon, J.S., Proteins Struct. Funct. Genet. (Suppl. 1) (1997) 198.
Grootenhuis, P.D.J. and Karplus, M., J. Comput.-Aided Mol. Design, 10 (1996) 1.
Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.T.J., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.
Engh, R.A., Brandstetter, H., Sucher, G., Eichinger, A., Baumann, U., Bode, W., Huber, R., Poll, T., Rudolph, R. and von der Saal, W., Structure, 4 (1996) 1353.
Von der Saal, W., Kucznierz, R., Leinert, H. and Engh, R.A., Bioorg. Med. Chem. Lett., 7 (1997) 1283.
Brandstetter, H., Turk, D., Hoeffken, W., Grosse, D., Sturzebecher, J., Martin, P.D., Edwards, B.F.P. and Bode, W., J. Mol. Biol., 226 (1992) 1085.
Banner, D.W. and Hadvary, P., J. Biol. Chem., 266 (1991) 20085.
Bode, W. and Turk, J., Eur. J. Biochem., 193 (1990) 175.
Sadowski, J., Gasteiger, J. and Klebe, G., J. Chem. Inf. Comput. Sci., 34 (1994) 1000.
Rusinko, A., Sheridan, R.P., Nilakantan, R., Haraki, K.S., Bauman, N. and Venkataraghavan, R., J. Chem. Inf. Comput. Sci., 29 (1989) 251.
Gasteiger, J. and Marsili, M., Tetrahedron Lett., 36 (1980) 3219.
McHugh, J., Algorithmic Graph Theory, Prentice-Hall, 1990, pp. 90–114.
Bayada et al., J. Chem. Inf. Comput. Sci., submitted.
Bauknecht, H., Zell, A., Bayer, H., Levi, P., Wagener, M., Sadowski, J. and Gasteiger, J., J. Chem. Inf. Comput. Sci., 36 (1996) 1205.
Grootenhuis, P.D.J. and van Galen, P.J.M., Acta Crystallogr., D51 (1995) 560.
Bursi, R.B. and Grootenhuis, P.D.J., J. Comput.-Aided Mol. Design (1999) in press.
Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.
Ewing, T. (Ed.) DOCK Version 4.0 Manual, Regents of the University of California, San Francisco, CA, 1997.
Kearsley, S.K., Underwood, D.J., Sheridan, R.P. and Miller, M.D., J. Comput.-Aided Mol. Design, 8 (1994) 565.
Miller, M.D., Kearsley, S.K., Underwood, D.J. and Sheridan, R.P., J. Comput.-Aided Mol. Design, 8 (1994) 153.
Knegtel, R.M.A., Kuntz, I.D. and Oshiro, C.M., J. Mol. Biol., 266 (1997) 424.
Todeschini, R., Lasagni, M. and Marengo, E., J. Chemometrics, 8 (1994) 263.
Todeschini, R., Gramatica, P., Provenzani, R. and Marengo, E., Chemometr. Intell. Lab. Syst., 27 (1995) 221.
Todeschini, R. and Gramatica, P., Quant. Struct.-Act. Relat., 16 (1997) 113.
Broto, P., Moreau, G. and Vandycke, C., Eur. J. Med. Chem., 19 (1984) 66.
Broto, P., Moreau, G. and Vandycke, C., Eur. J. Med. Chem., 19 (1984) 79.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Knegtel, R.M., Bayada, D.M., Engh, R.A. et al. Comparison of two implementations of the incremental construction algorithm in flexible docking of thrombin inhibitors. J Comput Aided Mol Des 13, 167–183 (1999). https://doi.org/10.1023/A:1008014604433
Issue Date:
DOI: https://doi.org/10.1023/A:1008014604433