Skip to main content
Log in

A computational model of the nicotinic acetylcholine binding site

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We have derived a model of the nicotinic acetylcholine binding site. This was accomplished by using three known agonists (acetylcholine, nicotine and epibatidine) as templates around which polypeptide side chains, found to be part of the receptor cavity from published molecular biology studies, are allowed to flow freely in molecular dynamics simulations and mold themselves around these templates. The resulting supramolecular complex should thus be a complement, both in terms of steric effects as well as electronic effects, to the agonists and it should be a good estimation of the true receptor cavity structure. The shapes of those minireceptor cavities equilibrated rapidly on the simulation time scale and their structural congruence is very high, implying that a satisfactory model of the nicotinic acetylcholine binding site has been achieved. The computational methodology was internally tested against two rigid and specific antagonists (dihydro-β-erytroidine and erysoidine), that are expected to give rise to a somewhat differently shaped binding site compared to that derived from the agonists. Using these antagonists as templates there were structural reorganizations of the initial receptor cavities leading to distinctly different cavities compared to agonists. This indicates that adequate times and temperatures were used in our computational protocols to achieve equilibrium structures for the agonists. Overall, both minireceptor geometries for agonists and antagonists are similar with the exception of one amino acid (ARG209).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noda, M., Takahushi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. and Numa, S., Nature, 299 (1982) 793.

    Google Scholar 

  2. Noda, M., Takahushi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. and Numa, S., Nature, 301 (1983) 251.

    Google Scholar 

  3. Noda, M., Takahushi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. and Numa, S., Nature, 302 (1983) 528.

    Google Scholar 

  4. Maricq, A. V., Peterson, A. S., Brake, A. J., Myers, R. M. and Julius, D., Science, 254 (1991) 432.

    Google Scholar 

  5. Unwin, N., J. Mol. Biol., 229 (1993) 1101.

    Google Scholar 

  6. Unwin, N., Nature, 373 (1995) 37.

    Google Scholar 

  7. Devillers-Thiery, A., Galzi, J. L., Eisele, J. L., Bertrand, S., Bertrand, D. and Changeux, J. P., J. Membrane Biol., 136 (1993) 97.

    Google Scholar 

  8. Dougherty, D. A. and Stauffer, D. A., Science, 250 (1990) 1558.

    Google Scholar 

  9. Aprison, M.H., Galvez-Ruano, E. and Lipkowitz, K. B., J. Neurosci. Res., 43 (1996) 127.

    Google Scholar 

  10. Sansom, M. S. P., Sankararamakrishnan, R. and Kerr, I. D., Nat. Struct. Biol., 2 (1995) 624.

    Google Scholar 

  11. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.

    Google Scholar 

  12. Momany, F. A. and Rhone, R., J. Comput. Chem., 13 (1992) 888.

    Google Scholar 

  13. Ryckaert, J. P., Ciccoti, G. and Berendsen, H. J. C., J. Comput. Phys., 23 (1977) 327.

    Google Scholar 

  14. Jorgensen, W. L., J. Am. Chem. Soc., 103 (1981) 335.

    Google Scholar 

  15. Carbo, R., Leyda, L. and Arnau, M., Int. J. Quantum Chem., XVII (1980) 1185.

    Google Scholar 

  16. Spartan, Wavefunction Inc.

  17. Vedani, A., Zbinden, P., Snyder, J. P. and Greenidge, P. A., J. Am. Chem. Soc., 117 (1995) 4987.

    Google Scholar 

  18. The approach by Vedani et al. is integrated into their Yak molecular modeling system and uses an algorithm that is based on the directionality of ligand-receptor interactions. Once anchor points on the ligand have been specified, complementary residues from a database are placed at those sites. Docking and geometry optimization with solvent effects included are repeated until all the functional groups of the ligand are saturated or until spatial requirements forbid further attachment of receptor residues. Mini-and pseudoreceptors are thus created where a minireceptor constitutes an unlinked group of residues and a pseudoreceptor is a linked group of such residues. Their last paper using the minireceptor concept is due to Jansen et al. [19] who constructed a 5-HT1A minireceptor for de novo design purposes.

  19. Jansen, J. M., Koehler, K. F., Hedberg, M. H., Johansson, A. M., Hacksell, U., Nordvall, G. and Snyder, J. P., J. Chem. Inf. Comput. Sci., 37 (1997) 812.

    Google Scholar 

  20. Harel, M., Schalk, Y., Ehret-Sabbatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P., Silman, Y. and Sussman, J., Proc. Natl. Acad. Sci. USA, 90 (1993) 9031.

    Google Scholar 

  21. Ashani, Y., Peggins, J. O. III and Doctor, B. P., Biochem. Biophys. Res. Commun., 184 (1992) 719.

    Google Scholar 

  22. Wilson, D. K., Rudolph, F. B. and Quiocho, F. A., Science, 252 (1991) 1278.

    Google Scholar 

  23. Spark, M. J., Winkler, D. A. and Andrews, P. R., Int. J. Quant. Chem., Quantum Biol. Symp., 9 (1982) 321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gálvez-ruano, E., Iriepa-Canalda, I., Morreale, A. et al. A computational model of the nicotinic acetylcholine binding site. J Comput Aided Mol Des 13, 57–68 (1999). https://doi.org/10.1023/A:1008029924865

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008029924865

Navigation