Skip to main content
Log in

Design criteria for molecular mimics of fragments of the β-turn. 1. Cα atom analysis

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Peptides represent an extensive class of biologically active molecules. They may be used as leads in the development of novel therapeutic agents provided the pharmacophoric information present within them can be translated into non-peptide analogs that lack the peptide backbone and are stable to proteolysis. This is the rationale for peptidomimetic drug design. Frequently, the β-turn has been implicated as a conformation important for biological recognition of peptides. Empirical evidence from known peptidomimetics, coupled with a theoretical model of peptide binding and the observation that glycine and proline residues are common within the β-turn, has suggested the design of molecules to mimic placement of between two and four of the side-chains. The moderate number of different β-turn conformations, combined with the combinatoric nature of side-chain selection complicates the procedure. In this paper, cluster analysis has been used to classify the arrangement of C atoms about the various fragments of the β-turn. Recombination of the observed patterns provides a general model for the β-turn which may be used as an effective screen for potential peptidomimetic scaffolds in chemical databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. König, W., Peptide and Protein Hormones: Structure, Regulation, Activity, VCH, Weinheim, 1993.

    Google Scholar 

  2. Taylor, M.D. and Amidon, G.L. (Eds) Peptide-Based Drug Design: Controlling Transport and Metabolism, ACS, Washington, DC, 1995.

    Google Scholar 

  3. Stephenson, S.L. and Kenny, A.J., Biochem. J., 241 (1987) 237.

    Google Scholar 

  4. Kahn, M., Synlett., 11 (1993) 821.

    Google Scholar 

  5. Giannis, A. and Kolter, T., Angew. Chem. Int. Ed. Engl., 32 (1993) 1244.

    Google Scholar 

  6. Gante, J., Angew. Chem. Int. Ed. Engl., 33 (1994) 1699.

    Google Scholar 

  7. Damewood, J.R., Rev. Comp. Chem., 9 (1996) 1.

    Google Scholar 

  8. Goodman, M. and Ro, S., In Wolf, M.E. (Ed.) Peptidomimetics for drug design, Vol. 1, Burger' Medicinal Chemistry and Drug Discovery, pp. 803–861.

  9. Farmer, P.S. (1980) In Ariëns, E. J., Drug Design, Vol. 10, Academic Press, New York, NY, 1980, pp. 119–143.

    Google Scholar 

  10. Beck-Sickinger, A.G., Wieland, H.A., Wittneben, H., Willim, K.D., Rudolf, K. and Jung, G., Eur. J. Biochem., 225 (1994) 947.

    Google Scholar 

  11. Peeters, T.L., Macielag, M.J., Depoortere, I., Konteatis, Z., Vantrappen, G., Lessor, R. and Florance, J., Regul. Pept., 40 (1992) 226.

    Google Scholar 

  12. Tam, J.P., Liu, W., Zhang, J.-W., Galantino, M., Bertolero, F., Christiani, C., Vaghi, F. and de Castiglione, R., Peptides, 15 (1994) 703.

    Google Scholar 

  13. Wüthrich, K., NMR of Proteins and Nucleic Acids, John Wiley, New York, NY, 1991.

    Google Scholar 

  14. Rose, G.D., Gierasch, L.M. and Smith, J.A., Adv. Protein Chem., 37 (1985) 1.

    Google Scholar 

  15. Dyson, H.J., Cross, K.J., Houghton, R.A., Wilson, I.A., Wright, P.E. and Lerner, R.A., Nature, 318 (1985) 480.

    Google Scholar 

  16. Veber, D.F., Freidinger, R.M., Perlow, D.S., Paleveda, W.J., Holly, F.W., Strachen, R.G., Nutt, R.F., Arison, B.H., Homnick, C., Randall, W.C., Glitzer, M.S., Saperstein, R. and Hirschmann, R., Nature, 292 (1981) 55.

    Google Scholar 

  17. Kopple, K.D., In Rich, D.H. and Gross, E. (Eds) Peptides: Synthesis, Structure, Function, Pierce Chemical Co., Rockford, IL, 1981, pp. 295–298.

    Google Scholar 

  18. Momany, F.A., J. Am. Chem. Soc., 98 (1976) 2990.

    Google Scholar 

  19. Walter, R., Fed. Proc., 36 (1977) 1872.

    Google Scholar 

  20. Fox, J.W., Vavarek, R.J., Tu, A.T. and Stewart, J.M., Peptides, 1 (1982) 193.

    Google Scholar 

  21. Bradbury, A.F., Smythe, D.G. and Snell, C.R., Nature, 260 (1976) 165.

    Google Scholar 

  22. Ball, J.B., Hughes, R.A., Alewood, P.F. and Andrews, P.R., Tetrahedron, 49 (1993) 3467.

    Google Scholar 

  23. Ball, J.B. and Alewood, P.F., J. Mol. Recogn., 3 (1990) 55.

    Google Scholar 

  24. Garland, S.L. and Dean, P.M., J. Comput.-Aided Mol. Design, 13 (1999) 485.

    Google Scholar 

  25. Milner-White, E.J., Trends Pharmacol. Sci., 10 (1989) 70.

    Google Scholar 

  26. Wilmot, C.M. and Thornton, J.M., J. Mol. Biol., 203 (1988) 221.

    Google Scholar 

  27. Wilmot, C.M. and Thornton, J.M., Protein Eng., 3 (1990) 479.

    Google Scholar 

  28. SYBYL 6.4, 1997, Tripos Associates Inc., St. Louis, MO.

  29. McLachlan, A.D., J. Mol. Biol., 128 (1979) 49.

    Google Scholar 

  30. Ward, J.H., J. Am. Stat. Assoc., 58 (1963) 236.

    Google Scholar 

  31. Mojena, R., Comput. J., 20 (1977) 359.

    Google Scholar 

  32. Abola, E.E., Bernstein, F.C., Bryant, S.H., Koetzle, T.F. and Weng, J., In Allen, F.H., Bergerhoff, G. and Sievers, R. (Eds), Crystallographic Databases: Information Content, Software Systems, Scientific Applications, Data Commission of the International Union of Crystallography, Cambridge, 1987, pp. 107–132.

    Google Scholar 

  33. Ripka, W.C., de Lucca, G.V., Bach, A.C., Pottorf, R.S. and Blaney, J.M., Tetrahedron, 49 (1993) 3609.

    Google Scholar 

  34. Weininger, D., J. Chem. Inf. Comput. Sci., 28 (1988) 31.

    Google Scholar 

  35. Weininger, D., Weininger, A. and Weininger, J. L., J. Chem. Inf. Comput. Sci., 29 (1989) 97.

    Google Scholar 

  36. Rusinko, A., Skell, J.M., Balducci, R., McGarity, C.M. and Pearlman, R.S., Concord: a program for the rapid generation of high-quality approximate 3-D molecular structures, Tripos Associates, St. Louis, MO, 1988.

    Google Scholar 

  37. Hirschmann, R., Sprengeler, P.A., Kawasaki, T., Leahy, J.W., Shakespeare, W.C. and Smith, A.B., Tetrahedron, 49 1993) 3665.

    Google Scholar 

  38. Chemical Design Ltd., Chipping Norton, U.K.

  39. Hoyt, M.J. and Bartlett, P.A., J. Am. Chem. Soc., 120 (1998) 4600.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garland, S., Dean, P. Design criteria for molecular mimics of fragments of the β-turn. 1. Cα atom analysis. J Comput Aided Mol Des 13, 469–483 (1999). https://doi.org/10.1023/A:1008045403729

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008045403729

Navigation