Skip to main content
Log in

Bidirectional Reflection Distribution Function of Thoroughly Pitted Surfaces

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We derive the BRDF (Bidirectional Reflection Distribution Function) at the mega scale of opaque surfaces that are rough on the macro and micro scale. The roughness at the micro scale is modeled as a uniform, isotropically scattering, Lambertian surface. At the macro scale the roughness is modeled by way of a distribution of spherical concavities. These pits influence the BRDF via vignetting, cast shadow, interreflection and interposition, causing it to differ markedly from Lambertian. Pitted surfaces show strong backward scattering (so called “opposition effect”). When we assume that the macro scale can be resolved, the radiance histogram and the spatial structure of the textons of the textured surface (at the mega scale) can be calculated. This is the main advantage of the model over previous ones: One can do exact (numerical) calculations for a surface geometry that is physically realizable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckmann, P. and Spizzichino, A. 1963. The scattering of electromagnetic waves from rough surfaces. New York: Pergamon.

    Google Scholar 

  • Beckmann, P. 1965. Shadowing of random rough surfaces. IEEE Transactions on Antennas and Propagation, AP–13: 384–388.

    Google Scholar 

  • Blinn, J. F. 1977. Models of light reflection from computer synthesized pictures. ACM Computer Graphics (SIGGRAPH77), 19(10): 542–547.

    Google Scholar 

  • Born, M. and Wolf, E. 1980. Principles of Optics, 6th ed. Oxford: Pergamon.

    Google Scholar 

  • Buckley, H. 1927. On the radiation from the inside of a circular cylinder. Philosophical Magazine, 4: 753–757.

    Google Scholar 

  • Buhl, D., Welch, W. J., and Rea, D. G. 1968. Reradiation and thermal emission from illuminated craters on the lunar surface. Journal of Geophysics Research, 73: 5281–5295.

    Google Scholar 

  • Dana, K. J., Van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1996. Reflectance and texture of real–world surfaces. Columbia University Technical Report cucs–048–96.

  • Dana, K. J., Van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1997. Reflectance and texture of real–world surfaces. Proc. IEEE Conf. on Comp. Vision and Patt. Rec. (CVPR).

  • Diggelen, van J. 1959. Photometric properties of lunar crater floors. Recherches Observatoire Utrecht, 14: 1–114.

    Google Scholar 

  • Fock, V. 1924. Zur Berechnung der Beleuchtungsstärke. Zeitschrift für Physik, 28: 102–113.

    Google Scholar 

  • Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. 1990. Computer Graphics, Principles and Practice, 2nd ed. Reading, Mass.: Addison–Wesley.

    Google Scholar 

  • Gershun, A. 1939. The light field. Transl. P. Moon and G. Timoshenko. Journal of Mathematical Physics, 18: 51.

    Google Scholar 

  • Gibson, J. J. 1950. The perception of the visual world. Boston: Houghton-Mifflin.

    Google Scholar 

  • Hunter, R. S. 1975. The measurement of appearance. New York: Wiley.

    Google Scholar 

  • Jacquez, J. A. and Kuppenheim, H. F. 1955. Theory of the integrating sphere. Journal of the Optical Society of America, 45: 460–470.

    Google Scholar 

  • Kerker, M. 1969. The scattering of light and other electromagnetic radiation. New York: Academic Press.

    Google Scholar 

  • Koenderink, J. J. and van Doorn, A. J. 1983. Geometrical modes as a general method to treat diffuse interreflections in radiometry. Journal of the Optical Society of America, 73: 843–850.

    Google Scholar 

  • Koenderink, J. J., van Doorn, A. J., and Stavridi, M. 1996. Bidirectional Reflection Distribution Function expressed in terms of surface scattering modes. Computer Vision–ECCV'96, B. Buxton and R. Cipolla (Eds.), Vol II, Springer: Berlin.

    Google Scholar 

  • Koenderink, J. J. and van Doorn, A. J. 1996. Illuminance texture due to surface mesostructure. Journal of the Optical Society of America, A13: 452–463.

    Google Scholar 

  • Kortüm, G. 1969. Reflectance spectroscopy. New York: Springer.

    Google Scholar 

  • Lambert, J. H. 1760. Photometria sive de mensura de gradibus luminis, colorum et umbræ. Augsburg: Eberhart Klett.

    Google Scholar 

  • Longhurst, R. S. 1957. Geometrical and physical optics. London: Longmans, Green and Co.

    Google Scholar 

  • Minnaert, M. 1941. The reciprocity principle in lunar photometry. Astrophysical Journal, 93: 403–410.

    Google Scholar 

  • Moon, P. 1940. On interreflections. Journal of the Optical Society of America, 30: 195–205.

    Google Scholar 

  • Moon, P. and Spencer, D. E. 1981. The photic field. Cambridge, Mass.: The M.I.T. Press.

    Google Scholar 

  • Nayar, S. K., Ikeuchi, K., and Kanade, T. 1991. Surface reflection: physical and geometrical perspectives. IEEE Transactions on Pattern Recognition and Machine Intelligence, 13: 611–634.

    Google Scholar 

  • Nayar, S.K. and Oren, M. 1995. Visual appearance of matte surfaces. Science, 267: 1153–1156.

    Google Scholar 

  • Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometrical considerations and nomenclature for reflectance. National Bureau of Standards (U.S.), Monograph 160.

  • Öpik, E. 1924. Photometric measures of the moon and the earth–shine. Publ. de L'Observ. Astron. de L'Univ. de Tartu, 26: 1–68.

    Google Scholar 

  • Oren, M. and Nayar, S. K. 1995. Generalization of the Lambertian model and implications for machine vision. International Journal of Computer Vision, 14: 227–251.

    Google Scholar 

  • Richards, W. A. 1982. Lightness scale from image intensity distributions. Applied Optics, 21: 2569–2582.

    Google Scholar 

  • Smith, B. J. 1967. Geometric shadowing of a random rough surface. IEEE Transactions on Antennas and Propagation, AP–15: 668–671.

    Google Scholar 

  • Stavridi, M., van Ginneken, B., and Koenderink, J. J. 1997. Surface bidirectional reflection distribution function and the texture of bricks and tiles. Applied Optics, 36: 3717–3725.

    Google Scholar 

  • Torrance, K. E. and Sparrow, E. M. 1967. Theory for off–specular reflections from roughened surfaces. Journal of the Optical Society of America, 57: 1105–1114.

    Google Scholar 

  • Wagner, R. J. 1967. Shadowing of randomly rough surfaces. Journal of the Acoustical Society of America, 41: 138–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenderink, J.J., Van Doorn, A.J., Dana, K.J. et al. Bidirectional Reflection Distribution Function of Thoroughly Pitted Surfaces. International Journal of Computer Vision 31, 129–144 (1999). https://doi.org/10.1023/A:1008061730969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008061730969

Navigation