Skip to main content
Log in

Conformational variety for the ansa chain of rifamycins: Comparison of observed crystal structures and molecular dynamics simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The antibiotic activity (via inhibition of DNA-dependent RNA polymerase, DDRP) of rifamycins has been correlated to the conformation of the ansa chain, which can be described by means of 17 torsion angles defined along the ansa backbone. It has been shown that favourable or unfavourable conformations of the ansa chain in rifamycin crystals are generally diagnostic of activity or inactivity against isolated DDRP. The principles of structure correlation suggest that the torsional variety observed in rifamycin crystals should mimic the dynamic flexibility of the ansa chain in solution. Twenty-six crystal structures of rifamycins are grouped into two classes (active and non-active). For each class the variance of the 17 ansa backbone torsion angles is analysed. Active compounds show a well-defined common pattern, while non-active molecules are more scattered, mainly due to steric constraints forcing the molecules into unfavourable conformations. The experimental distributions of torsion angles are compared to the torsional freedom of the ansa chain simulated by molecular dynamics calculations performed at different temperatures and conditions on rifamycin S and rifamycin O, which represent a typical active and a typical sterically constrained molecule, respectively. It is shown that the torsional variety found in the crystalline state samples the dynamic behaviour of the ansa chain for active compounds. The methods of circular statistics are illustrated to describe torsion angle distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lancini, G. and Zanichelli, W., In Perlman, D. (Ed.) Structure-Activity Relationship among the Semisynthetic Antibiotics, Academic Press, New York, NY, 1977, pp. 531–600.

    Google Scholar 

  2. Brufani, M., Cerrini, S., Fedeli, W. and Vaciago, A., J. Mol. Biol., 87 (1974) 409.

    Google Scholar 

  3. Brufani, M., Cellai, L., Cerrini, S., Fedeli, W. and Vaciago, A., Mol. Pharmacol., 14 (1978) 693.

    Google Scholar 

  4. Brufani, M., Cellai, L., Cerrini, S., Fedeli, W., Segre, A. and Vaciago, A., Mol. Pharmacol., 21 (1982) 394.

    Google Scholar 

  5. Arora, S.K., Mol. Pharmacol., 23 (1983) 133.

    Google Scholar 

  6. Arora, S.K. and Main, P., J. Antibiot., 37 (1984) 178.

    Google Scholar 

  7. Arora, S.K., J. Med. Chem., 28 (1985) 1099.

    Google Scholar 

  8. Bacchi, A., Mori, G., Pelizzi, G., Pelosi, G., Nebuloni, M. and Panzone, G.B., Mol. Pharmacol., 47 (1995) 611.

    Google Scholar 

  9. Bacchi, A., Ferrari, P., Nebuloni, M. and Pelizzi, G., J. Med. Chem., 41 (1998) 2319.

    Google Scholar 

  10. Bacchi, A. and Mori, G., CC'97: Conferentia Chemiometrica of Hungarian Chemical Society and Hungarian Academy of Sciences, Budapest, 21–23 August 1997.

  11. Allen, F.H. and Kennard, O., Chem. Des. Autom. News, 8 (1993) 1 and 31.

    Google Scholar 

  12. Gadret, M., Goursolle, M., Leger, J.M. and Colleter, J.C., Acta Crystallogr., B31 (1975) 1454.

    Google Scholar 

  13. Arora, S.K., Acta Crystallogr., B37 (1981) 152.

    Google Scholar 

  14. Cellai, L., Cerrini, S., Segre, A., Brufani, M., Fedeli, W. and Vaciago, A., J. Chem. Soc., Perkin Trans. 2, (1982) 1633.

    Google Scholar 

  15. Brufani, M., Cellai, L., Cerrini, S., Fedeli, W., Marchi, E., Segre, A. and Vaciago, A., J. Antibiot., 37 (1984) 1623.

    Google Scholar 

  16. Cellai, L., Cerrini, S., Lamba, D., Brizzi, V. and Brufani, M., J. Chem. Res. (S), (1987) 328.

  17. Cerrini, S., Lamba, D., Burla, M.C., Polidori, G. and Nunzi, A., Acta Crystallogr., C44 (1988) 489.

    Google Scholar 

  18. Bartolucci, C., Cellai, L., Cerrini, S., Lamba, D., Segre, A., Brizzi, V. and Brufani, M., Helv. Chim. Acta, 73 (1990) 185.

    Google Scholar 

  19. Leger, J.M. and Carpy, A., Helv. Chim. Acta, 74 (1991) 326.

    Google Scholar 

  20. Arora, S.K. and Arjunan, P., J. Antibiot., 45 (1992) 428.

    Google Scholar 

  21. Bartolucci, C., Cellai, L., Cerrini, S., Di Filippo, P. and Lamba, D., Helv. Chim. Acta, 75 (1992) 153.

    Google Scholar 

  22. Bartolucci, C., Cellai, L., Cerrini, S., Di Filippo, P., Lamba, D., Segre, A., Bianco, A.D., Guise, M., Pasquali, V. and Brufani, M., Helv. Chim. Acta, 76 (1993) 1459.

    Google Scholar 

  23. SYBYL 6.3, Copyright 1991–1996 Tripos Associates Inc., St. Louis, MO, U.S.A.

  24. Frisch, M.J., Trucks, G.W., Head-Gordon, M., Gill, P.M.W., Wong, M.W., Foresman, J.B., Johnson, B.G., Schlegel, H.B., Robb, M.A., Replogle, R.S., Gomperts, R., Andres, J.L., Raghavachari, K., Binkley, J.S., Gonzalez, C., Martin, R.L., Fox, D.J., Defrees, D.J., Baker, J., Stewart, J.J.P. and Pople, J.A., Gaussian92 1992, Gaussian Inc., Pittsburgh, PA, U.S.A.

    Google Scholar 

  25. Allen, F.H. and Johnson, O., Acta Crystallogr., B47 (1991) 62.

    Google Scholar 

  26. Batschelet, E., Circular Statistics in Biology, Academic Press, London, 1981.

    Google Scholar 

  27. Mardia, K.V., Statistics of Directional Data, Academic Press, London, 1972.

    Google Scholar 

  28. Blessing, R.H., J. Am. Chem. Soc., 105 (1983) 2776.

    Google Scholar 

  29. Burgi, H.B. and Dunitz, J.D. (Eds.) Structure Correlation, VCH, Weinheim, 1994.

    Google Scholar 

  30. Cellai, L., Cerrini, S., Segre, A., Brufani, M., Fedeli, W. and Vaciago, A., J. Org. Chem., 47 (1982) 2652.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacchi, A., Pelizzi, G. Conformational variety for the ansa chain of rifamycins: Comparison of observed crystal structures and molecular dynamics simulations. J Comput Aided Mol Des 13, 385–396 (1999). https://doi.org/10.1023/A:1008070316079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008070316079

Navigation