Skip to main content
Log in

Molecular modeling study of the differential ligand–receptor interaction at the μ, δ and κ opioid receptors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

3D models of the opioid receptors μ, δ and κ were constructed using BUNDLE, an in-house program to build de novo models of G-protein coupled receptors at the atomic level. Once the three opioid receptors were constructed and before any energy refinement, models were assessed for their compatibility with the results available from point-site mutations carried out on these receptors. In a subsequent step, three selective antagonists to each of three receptors (naltrindole, naltrexone and nor-binaltorphamine) were docked onto each of the three receptors and subsequently energy minimized. The nine resulting complexes were checked for their ability to explain known results of structure-activity studies. Once the models were validated, analysis of the distances between different residues of the receptors and the ligands were computed. This analysis permitted us to identify key residues tentatively involved in direct interaction with the ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casy, A.F. and Parfitt, R.T., Opioid Analgesics, Plenum Press, New York, NY, 1986.

    Google Scholar 

  2. Schiller, P.W., In Ellis, G.P. and West, G.B. (Eds.), Progress in Medicinal Chemistry, Vol. 28, Elsevier, Amsterdam, 1991, pp. 301–340.

    Google Scholar 

  3. Portoghese, P.S., In Herz, A. (Ed.), Handbook of Experimental Pharmacology, Vol. 104/I, Opioids I. Springer, Berlin, 1993, pp. 279–293.

    Google Scholar 

  4. Cometta-Morini, C. and Loew, G.H., Int. J. Quantum Chem., 44 (1992) 235.

    Google Scholar 

  5. Schiller, P.W. and Chung, N.N., Proc. Natl. Acad. Sci. USA, 89 (1992) 11871.

    Google Scholar 

  6. Qian, X., Shenderovich, M.D., Köver, K.E., Davis, P., Horvarth, R., Zalewska, T., Yamamura, H.I., Porreca, F. and Hruby, V.J., J. Am. Chem. Soc., 118 (1996) 7280.

    Google Scholar 

  7. Huang, P., Kim, S. and Loew, G., J. Comput.-Aided Mol. Design, 11 (1997) 21.

    Google Scholar 

  8. Portoghese, P.S., J. Med. Chem., 35 (1992) 1927.

    Google Scholar 

  9. Herz, A., In Mutschler, E. and Winterfeldt, E. (Eds.), Trends in Medicinal Chemistry, VCH, Weinheim, 1987, pp. 337–350.

    Google Scholar 

  10. Evans, C.K., Keith, D.E. Jr., Morrison, H., Magendzo, K. and Edwards, R.H., Science, 258 (1992) 1952.

    Google Scholar 

  11. Kieffer, B.L., Befort, K., Cavenaux-Ruff, G. and Hirth, C.C., Proc. Natl. Acad. Sci. USA, 89 (1992) 12048.

    Google Scholar 

  12. Chen, Y., Mestek, A., Liu, J. and Yu, L., Biochem. J., 295 (1993) 647.

    Google Scholar 

  13. Meng, F. and Akil, H., Proc. Natl. Acad. Sci. USA, 90 (1993) 9954.

    Google Scholar 

  14. Yasuda, K., Rainor, K., Kong, H., Breder, C., Takeda, J., Reisine, T. and Bell, C.I., Proc. Natl. Acad. Sci. USA, 90 (1993) 6736.

    Google Scholar 

  15. Wang, J.B., Imai, Y., Eppler, C.P., Cregor, P., Spivak, C.E. and Uhl, G.R., Proc. Natl. Acad. Sci. USA, 90 (1993) 10230.

    Google Scholar 

  16. Kong, H. and Reisine, T., J. Biol. Chem., 268 (1993) 23055.

    Google Scholar 

  17. Surratt, C.K., Johnson, P.S., Moriwaki, A., Seidleck, B.K., Blaschak, C.I., Wang, I.B. and Uhl, C.R., J. Biol. Chem., 269 (1994) 20548.

    Google Scholar 

  18. Wang, J.B., Johnson, P.S., Wu, J.M., Wang, W.F. and Uhl, G.R., J. Biol. Chem., 269 (1994) 25966.

    Google Scholar 

  19. Xue, J.-C., Chen, C., Zhu, J., Kunapuli, S.P., de Riel, J.K., Yu, L. and Lui-Chen, L.-Y., J. Biol. Chem., 269 (1994) 30195.

    Google Scholar 

  20. Onogi, T., Minami, M., Katao, Y., Nakagawa, T., Aoki, Y., Toya, T., Katsumata, S. and Satoh, M., FEBS Lett., 357 (1995) 93.

    Google Scholar 

  21. Fukuda, K., Kato, S. and Mori, K., J. Biol. Chem., 270 (1995) 6702.

    Google Scholar 

  22. Xue, J.-C., Chen, C., Zhu, J., Kunapuli, S.P., de Riel, J.K., Yu, L. and Liu-Chen, L.-Y., J. Biol. Chem., 270 (1995) 12977.

    Google Scholar 

  23. Meng, F., Hoversten, M.T., Thompson, R.C., Taylor, L., Watson, S.J. and Akil, H., J. Biol. Chem., 270 (1995) 12730.

    Google Scholar 

  24. Fukuda, K., Terasako, K., Kato, S. and Mori, K., FEBS Lett., 373 (1995) 177.

    Google Scholar 

  25. Schertler, C.F.X., Villa, C. and Henderson, R., Nature, 362 (1993) 770.

    Google Scholar 

  26. Schertler, C.F.X. and Hargrave, P.A., Proc. Natl. Acad. Sci. USA, 92 (1995) 11578.

    Google Scholar 

  27. Unger, V.M., Hargrave, P.A., Baldwin, J.M. and Schertler, G.F.X., Nature, 389 (1997) 203.

    Google Scholar 

  28. Metzger, T.G., Paterlini, M.G. and Porthoghese, P.S., Neurochem. Res., 21 (1996) 1287.

    Google Scholar 

  29. Befort, K., Tabbara, L., Kling, D., Maigret, B. and Kieffer, B., J. Biol. Chem., 271 (1996) 10161.

    Google Scholar 

  30. Rong, S.B., Zhu, Y.C., Jiang, H.L., Zhao, S.R., Wang, Q.M., Chi, Z.Q., Chen, K.X. and Ji, R.Y., Acta Pharmacol. Sinica, 18 (1997) 317.

    Google Scholar 

  31. Alkorta, I. and Loew, G.H., Protein Eng., 9 (1996) 573.

    Google Scholar 

  32. Strahs, D. and Weinstein, H., Protein Eng., 10 (1997) 1019.

    Google Scholar 

  33. Perez, J.J., Filizola, M. and Carteni-Farina, M., J. Math. Chem., 23 (1998) 229.

    Google Scholar 

  34. Filizola, M., Perez, J.J. and Carteni-Farina, M., J. Comput.-Aided Mol. Design, 12 (1998) 111.

    Google Scholar 

  35. Zaki, P.A., Bilsky, E.J., Vanderah, T.W., Lai, J., Evans, C.J. and Porreca, F., Annu. Rev. Pharmacol. Toxicol., 16 (1996) 379.

    Google Scholar 

  36. Bairoch, A. and Bieckmann, B., Nucleic Acids Res., 22 (1994) 3578.

    Google Scholar 

  37. Rost, B., Casadio, R., Fariselli, P. and Sander, C., Protein Sci., 4 (1995) 521.

    Google Scholar 

  38. Pearlman, D.A., Case, D.A., Caldwell, J.C., Seibel, G.L., Singh, U.C., Weiner, P. and Kollman, P.A., AMBER 4.0, University of California, San Francisco, CA, 1991.

    Google Scholar 

  39. Eisenberg, D., Weiss, R.M. and Terwilliger, T.C., Nature, 299 (1982) 371.

    Google Scholar 

  40. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Chio, C., Alagona, G., Profeta, S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  41. Frisch, M.J., Trucks, C.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.C., Ortiz, J.V., Foresman, J.B., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.J.P., Head-Gordon, M., Gonzales, C. and Pople, J.A., Gaussian' 94, Gaussian Inc., Pittsburgh, PA, 1995.

    Google Scholar 

  42. Kristiansen, K., Dahl, S.G. and Edvardsen, Ø., Proteins, 26 (1996) 81.

    Google Scholar 

  43. Befort, K., Tabbara, L., Bausch, S., Chavkin, C., Evans, C. and Kieffer, B., Mol. Pharmacol., 49 (1996) 216.

    Google Scholar 

  44. Schwartz, T.W., Curr. Opin. Biotechnol., 5 (1994) 434.

    Google Scholar 

  45. Probst, W.C., Snyder, L.A., Schuster, D.I., Brosius, J. and Seaflon, S.C., DNA Cell Biol., 11 (1992) 1.

    Google Scholar 

  46. Fraser, C.D., Wang, C.D., Robinson, D.A., Cocayne, J.D. and Venter, J.C., Mol. Pharmacol., 36 (1989) 840.

    Google Scholar 

  47. Strader, C.D., Rios-Candelore, M., Hill, W.S., Sigal, I.S. and Dixon, R.A.F., J. Biol. Chem., 264 (1989) 13572.

    Google Scholar 

  48. Wang, C.D., Buck, M.A. and Fraser, M.C., Mol. Pharmacol., 40 (1991) 168.

    Google Scholar 

  49. Lin, C.-E., Takemori, A.E. and Portoghese, P.S., J. Med. Chem., 36 (1993) 2412.

    Google Scholar 

  50. Filizola, M., Carteni-Farina, M. and Perez, J.J., J. Phys. Chem. B, in press.

  51. Maguire, P.A., Perez, J.J., Tsai, N.F., Rodriguez, L., Beatty, M., Villar, H.O., Kamal, J.J., Upton, C., Casy, A.F. and Loew, G.H., Mol. Pharmacol., 44 (1993) 1246.

    Google Scholar 

  52. Portoghese, P.S., Lipkowski, A.W. and Takemori, A.E., Life Sci., 30 (1987) 1287.

    Google Scholar 

  53. Hjorth, S.A., Thirstrup, K., Crandy, D.K. and Schwartz, T.W., Mol. Pharmacol., 47 (1995) 1089.

    Google Scholar 

  54. Schwyzer, R., Ann. N.Y. Acad. Sci., 247 (1977) 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filizola, M., Carteni-Farina, M. & Perez, J.J. Molecular modeling study of the differential ligand–receptor interaction at the μ, δ and κ opioid receptors. J Comput Aided Mol Des 13, 397–407 (1999). https://doi.org/10.1023/A:1008079823736

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008079823736

Navigation