Skip to main content
Log in

Neural Network Force Control for Industrial Robots

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, we present a hierarchical force control framework consisting of a high level control system based on neural network and the existing motion control system of a manipulator in the low level. Inputs of the neural network are the contact force error and estimated stiffness of the contacted environment. The output of the neural network is the position command for the position controller of industrial robots. A MITSUBISHI MELFA RV-M1 industrial robot equipped with a BL Force/Torque sensor is utilized for implementing the hierarchical neural network force control system. Successful experiments for various contact motions are carried out. Additionally, the proposed neural network force controller together with the master/slave control method are used in dual-industrial robot systems. Successful experiments are carried out for the dual-robot system handling an object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mason, M. T.: Compliance and force control for computer controlled manipulators, IEEE Trans. Systems Man Cybernet. 11 (1981), 418–432.

    Google Scholar 

  2. Raibert, M. and Craig, J.: Hybrid position/force control of manipulators, ASME J. Dyn. Systems Meas. Control 102 (1981), 126–132.

    Google Scholar 

  3. Koo, C. Y. and Wang, S. P. T.: Nonlinear robust hybrid control of robotic manipulators, ASME J. Dyn. Systems Meas. Control 112 (1990), 48–54.

    Google Scholar 

  4. Hogan, N.: Impedance control: An approach to manipulation: Part I – Theory, Part II – Implementation, and Part III – Application, ASME J. Dyn. Systems Meas. Control 107 (1985), 1–24.

    Google Scholar 

  5. Hogan, N.: Stable execution of contact tasks using impedance control, in: IEEE Internat. Conf. on Robotics and Automation, 1987, pp. 595–601.

  6. Kazerooni, H., Sheridan, T. B., and Houpt, P. K.: Robust compliant motion for manipulator, Part 1: The fundamental concepts, Part 2: Design method, IEEE J. of Robotics and Automation 2(2) (1986), 82–105.

    Google Scholar 

  7. Kazerooni, H.: Robust non-linear impedance control for robot manipulators, in: IEEE Internat. Conf. on Robotics and Automation, Vol. 2, 1987, pp. 741–750.

    Google Scholar 

  8. Kelly, R., Carelli, R., Amestegui, M., and Ortega, R.: Adaptive impedance control of robot manipulators, Internat. J. Robotics Automat. 4(3) (1989), 134–141.

    Google Scholar 

  9. Merlet, J. P.: C-surface applied to the design of a hybrid force-position robot controller, in: Proc. of the 1987 IEEE Internat. Conf. on Robotics and Automation, Vol. 2, 1987, pp. 1055–1059.

    Google Scholar 

  10. Yoshikawa, T. and Sudou, A.: Dynamic hybrid position-force control of robot manipulators: On-line estimation of unknown constraint, IEEE, CH2876-1/90/0000/1231, 1990.

  11. Zweng, G. and Hemami, A.: An overview of robot force control, Robotica 15(5) (1997), 473–482.

    Google Scholar 

  12. Vukobratovic, M. and Ekalo, Y.: New approach to control of robotic manipulators interacting with dynamic environment, Robotica 14(1) (1996), 31–39.

    Google Scholar 

  13. Volpe, R. and Khosla, P.: A theoretical and experimental investigation of explicit force control strategies for manipulators, IEEE Trans. Automat. Control 38(11) (1993), 1634–1650.

    Google Scholar 

  14. Degoulange, E. and Dauchez, P.: External force control of an industrial PUMA 560 Robot, J. Robotic Systems 11(6) (1994), 523–540.

    Google Scholar 

  15. Lin, S. T. and Huang, A. K.: Position-based fuzzy force control for dual industrial robot, J. Intelligent Robotic Systems 19(4) (1997), 393–409.

    Google Scholar 

  16. Chan, S. P.: A neural network compensator for uncertainties in robot assembly, J. Intelligent Robotic Systems 13 (1995), 127–141.

    Google Scholar 

  17. Corbet, T., Sepehri, N., and Lawrence, P. D.: Fuzzy control of a class of hydraulically actuated industrial robots, IEEE Trans. Control Systems Technol. 4(4) (1996), 419–426.

    Google Scholar 

  18. Fukuda, T., Kurihara, T, Shibata, T, Tokita, M., and Mitsuoka, T.: Application of neural network-based servo controller to position, force and stabbing control by robotic manipulator, JSME Internat. J., Series III 34(2) (1991), 303–309.

    Google Scholar 

  19. Ishiguro, A., Furuhashi, T., and Okuma, S.: A neural network compensator for uncertainties of robotics manipulators, IEEE Trans. Industr. Electronics 39(6) (1992), 565–570.

    Google Scholar 

  20. Liu, M. H.: Force-controlled fuzzy-logic-based robotic deburring, Control Engrg. Practice 3(2) (1995), 189–201.

    Google Scholar 

  21. Tang, J., Watanabe, K., and Nakamura, M.: Block hierarchical fuzzy-neural networks and their application to a mobile robot control, J. Robotics Mechatronics 7(1) (1995), 12–20.

    Google Scholar 

  22. Watanabe, K. and Tzafestas, S. G.: Fuzzy logic controller as a compensator in the problem of tracking control of manipulators, in: Proc. of the IFToMM-jc Internat. Symp. on Theory of Machines and Mechanisms, 1992, pp. 98–103.

  23. Katic, D. and Vukobratovic, M.: A connectionist based robot control: An overview, in: Proc. of the 13th IFAC World Congress, San Francisco, 1996, pp. 169–174.

  24. Venkataramam, S., Gulati, S., Barhen, J., and Toomarian, N.: A neural network-based identification of environment models for compliant control of space robot, IEEE Trans. Robotic Automat. 9(5) (1993), 685–697.

    Google Scholar 

  25. Kiguchi, K. and Fukuda, T.: Robot manipulator contact force control application of fuzzyneural network, in: Proce. of the IEEE Internat. Conf. on Robotic and Automation, Nagoya, 1995, pp. 875–880.

  26. Katic, D. and Vukobratovic, M.: Robot compliance control algorithm based on neural network classification and learning of robot-environment dynamic model, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, Albuquerque, 1997, pp. 2632–2637.

  27. Hu, Y. R., Goldenberg, A. A., and Zhou, C.: Motion and force control of coordinated robots during constrained motion tasks, Internat. J. Robotics Res. 14(4) (1995), 351–365.

    Google Scholar 

  28. Hayati, S.: Hybrid position/force control of multi-arm cooperating robots, in: Proc. of the IEEE Internat. Conf. on Robotics and Automation, Los Alamitos, CA, 1986, pp. 82–89.

  29. Yoshikawa, T. and Zheng, X. Z.: Coordinated dynamic hybrid position/force control for multiple robot manipulators handling one constrained object, Internat. J. Robotics Res. 12(3) (1993), 219–230.

    Google Scholar 

  30. Fujii, S. and Kurono, S.: Coordinated computer control of a pair of manipulators, Industr. Robot (1975), 155–161.

  31. Ishida, T.: Force control in coordination of two arms, in: Proc. of the 5th Internat. Joint Conf. on Artificial Intelligence, 1977, pp. 717–722.

  32. Zurada, J. M.: Introduction to Artificial Neural Network Systems, West Info Access, Singapore, 1992.

    Google Scholar 

  33. Astrom, K. J. and Wittenmark, B.: Adaptive Control, 2nd ed., Addison-Wesley, Reading, MA, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, ST., Tzeng, SJ. Neural Network Force Control for Industrial Robots. Journal of Intelligent and Robotic Systems 24, 253–268 (1999). https://doi.org/10.1023/A:1008093719860

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008093719860

Navigation