Skip to main content
Log in

A model for the binding of low molecular weight inhibitors to the active site of thrombin

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

This paper describes the construction, validation and application of an active site model of the serine protease thrombin. Initial use was made of medium resolution X-ray crystallographic structures of thrombin complexed with low molecular weight, non-specific inhibitors to create a computationally useable active site shell of the enzyme. Molecular mechanics methods were then applied to dock known ligands into the active site region in order to derive a model that would accurately predict binding conformations. Validation of the modelling process was achieved by comparison of the predicted enzyme-bound conformations with their known, crystallographic binding conformations. The resultant model was used extensively for predictive purposes prior to obtaining confirmatory crystal data relating to a ligand possessing a novel and unexpected binding component complexed to thrombin. The data served both to confirm the accuracy of the binding site model and to provide information for the further refinement of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. a. Fenton II, J.W., Ann. N.Y. Acad. Sci., 485 (1986) 5. b. Fenton II, J.W., Ofosu, F.A., Moon, D.G. and Maraganore, J.M., Blood Coag. Fibrinol., 2 (1991) 69. c. Berliner, L.T. (Ed.) Thrombin Structure and Function, Plenum Press, New York, NY, 1992. d. Tapparelli, C., Metternich, R., Ehrhardt, C. and Cook, N.S., Trends Pharmacol. Sci., 14 (1993) 366.

    Google Scholar 

  2. a. Semple, J., Minami, N.K., Tamura, S.Y., Brunck, T.K., Nutt, R.F. and Ripka, W.C., Bioorg. Med. Chem. Lett., 7 (1997) 2421. b. Tucker, T.J., Lumma, W.C., Mulichak, A.M., Chen, Z., Naylor-Olsen, A.M., Lewis, S.D., Lucas, R., Freidinger, R.M. and Kuo, L.C., J. Med. Chem., 40 (1997) 830. c. Dominguez, C., Carini, D.J., Weber, P.C., Knabb, R.M., Alexander, R.S., Kettner, C.A. and Wexler, R.R., Bioorg. Med. Chem. Lett., 7 (1997) 79. d. Wiley, M.R., Chirgadze, N.Y., Clawson, D.K., Craft, T.J., Gifford-Moore, D.S., Jones, N.D., Olkowski, J.L., Weir, L.C. and Smith, G.F., Bioorg. Med. Chem. Lett., 6 (1996) 2387. e. Costanzo, M.J., Maryanoff, B.E., Hecker, L.R., Schott, M.R., Yabut, S.C., Zhang, H.-C., Andreade-Gordan, P., Kauffman, J.A., Lewis, J.M., Krishnan, R. and Tulinsky, A., J.Med. Chem., 39 (1996) 3039.

    Google Scholar 

  3. Topol, E.J., Fuster, V., Harrington, R.A., Califf, R.M., Kleiman, N.S., Kereiakes, D.J., Cohen, M., Chapekis, A., Gold, H.K., Tannenbaum, M.A., Rao, A.K., Debowey, D., Schwarz, D., Henis, M. and Cheseboro, J., Circulation, 89 (1994) 1557.

    Google Scholar 

  4. Lidon, R.M., Theroux, P., Juneau, M., Adelman, B. and Maraganore, J., Circulation, 88 (1993) 1495.

    Google Scholar 

  5. Kikumoto, R., Tamao, Y., Tezuka, T., Tonomura, S., Hara, H., Ninomiya, K., Hijikata, A. and Okamoto, S., Biochemistry, 23 (1984) 85.

    Google Scholar 

  6. a. Sanderson, P.E.J., Dyer, D.L., Naylor-Olsen, A.M., Vacca, J.P., Gardell, S.J., Dale Lewis, S., Lucas Jr., B.J., Lyle, E.A., Lynch Jr., J.J. and Mulichak, A.M., Bioorg. Med. Chem. Lett., 7 (1997) 1497. b. Tamura, S.Y., Goldman, E.A., Brunck, T.K., Ripka, W.C. and Semple, J.E., Bioorg. Med. Chem. Lett., 7 (1997) 331. c. Jiang, H., Chen, K., Tang, Y., Chen, J., Wang, Q. and Ji, R., J. Med. Chem., 40 (1997) 3085. d. Jiang, H., Chen, K., Tang, Y., Chen, J., Li, Q., Wang, Q. and Ji, R., Acta Pharm. Sinica, 18 (1997) 36. e. Bertrand, J.A., Oleksyszyn, J., Kam, C., Boduszek, B., Presnell, S., Plaskon, R.R., Suddath, F.L., Powers, J.C. and Williams, L.D., Biochemistry, 35 (1996) 3147.

    Google Scholar 

  7. Bode, W., Mayr, I., Baumann, U., Uber, R., Stone, S.R. and Hofsteenge, J., EMBO J., 8 (1989) 3467.

    Google Scholar 

  8. Banner, D.W. and Hadvary, P., J. Biol. Chem., 266 (1991) 20085.

    Google Scholar 

  9. Mohamadi, F., Richards, N.G.J., Guida, W.C., Liskamp, R., Lipton, M., Caulfield, C., Chang, T., Hendrickson, T. and Still, W.C., J. Comput. Chem., 11 (1990) 440.

    Google Scholar 

  10. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  11. Guida, W.C., Bohacek, R.S. and Erion, M.D., J. Comput. Chem., 13 (1992) 214.

    Google Scholar 

  12. The numbering of the thrombin residues is based on Bode et al.' protocol for chymotrypsin [7].

  13. Chang, G., Guida, W.C. and Still, W.C., J. Am. Chem. Soc., 111 (1989) 4379.

    Google Scholar 

  14. P1, P2, P3 etc., define substrate residues amino-terminal to the scissile peptide bond according to Schecter, I. and Berger, A., Biochem. Biophys. Res. Commun., 27 (1967) 157.

    Google Scholar 

  15. a. Tucker, T.J., Brady, S.F., Lumma, W.C., Dale Lewis, S., Gardell, S.J., Naylor-Olsen, A.M., Yan, Y., Sisko, J.T., Stauffer, K.J., Lucas, B.J., Lynch, J.J., Cook, J.J., Stranieri, M.T., Holahan, M.A., Lyle, E.A., Baskin, E.P., Chen, I., Dancheck, K.B., Krueger, J.A., Cooper, C.M. and Vacca, J.P., J. Med. Chem., 41 (1998) 3210. b. Sall, D.J., Bastian, J.A., Briggs, S.L., Buben, J.A., Chirgadze, N.I., Clawson, D.K., Denney, M.L., Giera, D.D., Gifford-Moore, D.S., Harper, R.W., Hauser, K.L., Klimkowski, V.J., Kohn, T.J., Lin, H., Mc-Cowan, J.R., Palkowitz, A.D., Smith, G.F., Takeuchi, K., Thrasher, K.J., Tinsley, J.M., Utterback, B.G., Yan, S.B. and Zhang, M., J. Med. Chem., 40 (1997) 3489.

    Google Scholar 

  16. Priestle, J., Rahuel, J. and Gruetter, M., Internal CIBA-Geigy Report (11-06-93).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, M.C., Cockcroft, X.L.F., Gruetter, M.G. et al. A model for the binding of low molecular weight inhibitors to the active site of thrombin. J Comput Aided Mol Des 13, 579–588 (1999). https://doi.org/10.1023/A:1008098615891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008098615891

Navigation