Skip to main content
Log in

Abstract

This paper presents extensions of stochastic gradient independent component analysis (ICA) methods to the blind deconvolution task. Of particular importance in these extensions are the constraints placed on the deconvolution system transfer function. While unit-norm constrained ICA approaches can be directly applied to the prewhitened blind deconvolution task, an allpass filter constraint within the optimization procedure is more appropriate. We show how such constraints can be approximately imposed within gradient adaptive finite-impulse-response (FIR) filter implementations by proper extensions of gradient techniques within the Stiefel manifold of orthonormal matrices. Both on-line time-domain and block-based frequency-domain algorithms are described. Simulations verify the superior performance behaviors provided by our allpass-constrained algorithms over standard unit-norm-constrained ICA algorithms in blind deconvolution tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.N. Godard, “Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems,” IEEE Trans. Commun., vol. 28, 1980, pp. 1867–1875.

    Article  Google Scholar 

  2. J.R. Treichler and B.G. Agee, “A New Approach to Multipath Correction of Constant Modulus Signals,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 31, 1983, pp. 349–372.

    Article  Google Scholar 

  3. S. Bellini, “Bussgang Techniques for Blind Deconvolution and Equalization,” in Blind Deconvolution, S. Haykin (Ed.), Englewood Cliffs, NJ: Prentice-Hall, 1994, pp. 8–59.

    Google Scholar 

  4. O. Shalvi and E. Weinstein, “Universal Methods for Blind Deconvolution,” in Blind Deconvolution, S. Haykin (Ed.), Englewood Cliffs, NJ: Prentice-Hall, 1994, pp. 121–180.

    Google Scholar 

  5. S.C. Douglas, A. Cichocki, and S. Amari, “Fast-Convergence Filtered Regressor Algorithms for Blind Equalisation,” Electron. Lett., vol. 32, 1996, pp. 2114–2115.

    Article  Google Scholar 

  6. S.C. Douglas, A. Cichocki, and S. Amari, “Self-Whitening Algorithms for Adaptive Equalization and Deconvolution,” IEEE Trans. Signal Processing, vol. 47, 1999, pp. 1161–1165.

    Article  Google Scholar 

  7. S. Amari, A. Cichocki, and H.H. Yang, “A New Learning Algorithm for Blind Signal Separation,” Adv. Neural Inform. Proc. Sys. 8, Cambridge, MA: MIT Press, 1996, pp. 757–763.

    Google Scholar 

  8. J.-F. Cardoso and B. Laheld, “Equivariant Adaptive Source Separation,” IEEE Trans. Signal Processing, vol. 44, pp. 3017–3030, 1996.

    Article  Google Scholar 

  9. P. Comon, “Independent Component Analysis: A New Concept?” Signal Processing, vol. 36, no.3, 1994, pp. 287–314.

    Article  MATH  Google Scholar 

  10. N. Delfosse and P. Loubaton, “Adaptive Blind Separation of Independent Sources: A Deflation Approach,” Signal Processing, vol. 45, no.1, 1995, pp. 59–83.

    Article  MATH  Google Scholar 

  11. A. Cichocki, R. Thawonmas, and S. Amari, “Sequential Blind Signal Extraction in Order Specified By Stochastic Properties,” Electron. Lett., vol. 33, no.1, 1997, pp. 64–65.

    Article  Google Scholar 

  12. A. Hyvärinen and E. Oja, “A Fast Fixed-Point Algorithm for Independent Component Analysis,” Neural Computation, vol. 9, no.7, 1997, pp. 1483–1492.

    Article  Google Scholar 

  13. A. Hyvärinen, “Independent Component AnalysisByMinimization of Mutual Information,” Tech. Rep. A46, Lab. Comput. Inform. Sci., Helsinki Univ. Tech., Aug. 1997.

  14. S.-Y. Kung, “Independent Component Analysis In Hybrid Mixture: KuicNet Learning Algorithm And Numerical Analysis,” in Proc. Int. Symp. Multimedia Inform. Processing, Taipei, Taiwan, Dec. 1997, pp. 368–381.

  15. S.-Y. Kung and C. Mejuto, “Extraction Of Independent Components From Hybrid Mixture: KuicNet Learning Algorithm and Applications,” in Proc. Int. Conf. Acoust., Speech, Signal Processing, Seattle, WA, vol. II, 1998, pp. 1209–1212.

    Google Scholar 

  16. S.-Y. Kung, “Independent Component Analysis: Extrema-Correspondence Properties for Higher-Order Moment Functions,” in Proc. IEEE Workshop Neural Networks Signal Processing, Cambridge, UK, Aug. 1998, pp. 53–62.

  17. S.C. Douglas and S.-Y. Kung, “Design of Estimation/Deflation Approaches to Independent Component Analysis,” in Proc. 32nd Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, vol. 1, Nov. 1998, pp. 707–711.

    Google Scholar 

  18. S.C. Douglas and S.-Y. Kung, “An Ordered-Rotation KuicNet Algorithm for Separating Arbitrarily-Distributed Sources,” in Proc. IEEE Workshop Indep. Compon. Anal. Signal Separation, Aussois, France, Jan. 1999, pp. 81–86.

  19. R.H. Lambert, “Multichannel Blind Deconvolution: FIR Matrix Algebra and Separation of Multipath Mixtures,” Ph.D. Dissertation, Univ. Southern California, Los Angeles, CA, May 1996.

    Google Scholar 

  20. S.C. Douglas and S. Haykin, “On the Relationship Between Blind Deconvolution and Blind Source Separation,” in Proc. 31st Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, vol. 2, Nov. 1997, pp. 1591–1595.

    Google Scholar 

  21. I. Sabala, A. Cichocki, and S. Amari, “Relationships Between Instantaneous Blind Source Separation and Multichannel Blind Deconvolution,” in Proc. IEEE Int. Joint Conf. Neural Networks, Anchorage, AK, vol. 1, May 1998, pp. 39–44.

    Google Scholar 

  22. S.C. Douglas and S.-Y. Kung, “KuicNet Algorithms for Blind Deconvolution,” in Proc. IEEE Workshop Neural Networks Signal Processing, Cambridge, UK, Aug. 1998, pp. 3–12.

  23. S.C. Douglas and S. Haykin, “Relationships Between Blind Deconvolution and Blind Source Separation,” in Unsupervised Adaptive Filtering, Volume II: Blind Deconvolution, S. Haykin (Ed.), New York: Wiley, 2000, pp. 113–145.

    Google Scholar 

  24. M. Lang, “Allpass Filter Design and Applications,” IEEE Trans. Signal Processing, vol. 46, 1998, pp. 2505–2514.

    Article  Google Scholar 

  25. T.Q. Nguyen, T.I. Laakso, and R.D. Koilpillai, “Eigenfilter Approach for the Design of Allpass Filters Approximating a Given Phase Response,” IEEE Trans. Signal Processing, vol. 42, 1994, pp. 2257–2263.

    Article  Google Scholar 

  26. B. Farhang-Boroujeny and S. Nooshfar, “Adaptive Phase Equalization Using All-Pass Filters,” in Proc. IEEE Int. Conf. Commun., Denver, CO, vol. 3, June 1991, pp. 1403–1407.

    Google Scholar 

  27. T.J. Lim and M.D. Macleod, “Adaptive Allpass Filtering for Nonminimum-Phase System Identification,” IEE Proc.–Vision, Image, Signal Processing, vol. 141, 1994, pp. 373–379.

    Article  Google Scholar 

  28. M. Kobayashi, Y. Takagi, J. Okelly, and Y. Itoh, “An IIR Adaptive Filter Based on Estimation of Allpass System,” IEEE Trans. Circuits Syst. II: Analog Digital Signal Processing, vol. 45, 1998, pp. 676–684.

    Article  MATH  Google Scholar 

  29. A. Edelman, T. Arias, and S.T. Smith, “The Geometry of Algorithms with Orthogonality Constraints,” SIAM J. Matrix Anal. Appl., vol. 20, 1998, pp. 303–353.

    Article  MathSciNet  MATH  Google Scholar 

  30. S.T. Smith, “Geometric Optimization Methods for Adaptive Filtering,” Ph.D. Thesis, Harvard Univ., Cambridge, MA, 1993.

    Google Scholar 

  31. U. Helmke and J.B. Moore, Optimization and Dynamical Systems, New York: Springer-Verlag, 1994.

    Book  Google Scholar 

  32. D.R. Fuhrmann, “A Geometric Approach to Subspace Tracking,” in Proc. 31st Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, vol. 1, Nov. 1997, pp. 783–787.

    Google Scholar 

  33. T. Chen, S. Amari, and Q. Lin, “A Unified Algorithm for Principal and Minor Components Extraction,” Neural Networks, vol. 11, 1998, pp. 385–390.

    Article  Google Scholar 

  34. S.C. Douglas, S. Amari, and S.-Y. Kung, “Gradient Adaptation Under Unit-Norm Constraints,” Proc. IEEEWorkshop Statistical Signal Array Processing, Portland, OR, Sept. 1998, pp. 144–147.

  35. S.C. Douglas, S.-Y. Kung, and S. Amari, “A Self-Stabilized Minor Subspace Rule,”IEEE Signal Processing Lett., vol. 5, 1998, pp. 328–330.

    Article  Google Scholar 

  36. S.C. Douglas, S.-Y. Kung, and S. Amari, “On the Numerical Stabilities of Principal, Minor, and Independent Component Analysis Algorithms,” in Proc. IEEE Workshop Indep. Compon. Anal. Signal Separation, Aussois, France, Jan. 1999, pp. 419–424.

  37. S.C. Douglas, S.-Y. Kung, and S. Amari, “On Gradient Adaptation with Unit-Norm Constraints,” IEEE Trans. Signal Processing, vol. 48, 2000, pp. 1843–1847.

    Article  Google Scholar 

  38. S.C. Douglas and S. Amari, “Natural Gradient Adaptation,” in Unsupervised Adaptive Filtering, Volume I: Blind Source Separation, S. Haykin (Ed.), New York: Wiley, 2000, pp. 13–61.

    Google Scholar 

  39. S.C. Douglas, “Prewhitened Blind Source Separation with Orthogonality Constraints,” presented at 33rd Ann. Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, Oct. 24–27, 1999.

  40. S.C. Douglas, “Self-Stabilized Gradient Algorithms for Blind Source Separation with Orthogonality Constraints,” IEEE Trans. Neural Networks, to appear.

  41. S.C. Douglas, S. Amari, and S.-Y. Kung, “Adaptive Paraunitary Filter Banks for Spatio-Temporal Principal and Minor Subspace Analysis,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Phoenix, AZ, vol. 2, Mar. 1999, pp. 1089–1092.

    Google Scholar 

  42. K.I. Diamantaras and S.-Y. Kung, Principal Component Neural Networks: Theory and Applications, New York: Wiley, 1996.

    MATH  Google Scholar 

  43. S.C. Douglas and A. Cichocki, “Neural Networks for Blind Decorrelation of Signals,” IEEE Trans. Signal Processing, vol. 45, 1997, pp. 2829–2842.

    Article  Google Scholar 

  44. R.M. Gray, “Toeplitz and Circulant Matrices: A Review,” Technical Rep. No. 6504-1, Inform. Syst. Lab., Stanford Univ., Stanford, CA, Apr. 1977.

    Google Scholar 

  45. S. Amari, S.C. Douglas, A. Cichocki, and H.H. Yang, “Multichannel Blind Deconvolution and Equalization Using the Natural Gradient,” in Proc. 1st IEEE Workshop Signal Proc. Adv. Wireless Commun., Paris, France, Apr. 1997, pp. 101–104.

  46. J.J. Shynk, “Frequency-Domain and Multirate Adaptive Filters,” IEEE Signal Processing Mag., vol. 9, no.1, 1992, pp. 14–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, S.C., Kung, SY. Gradient Adaptive Algorithms for Contrast-Based Blind Deconvolution. The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 26, 47–60 (2000). https://doi.org/10.1023/A:1008191316248

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008191316248

Keywords

Navigation