Skip to main content
Log in

Control Approach for Legged Robots with Fast Gaits

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

A constructive control approach is proposed for legged robots with fast dynamic gaits. These systems interact intermittently with the environment. Our approach is based on Controlled Limit Cycles (CLC) and stabilizes periodic system trajectories. The designed control law generates (on-line) the desired trajectories and control input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, C. and Hollerbach, J.: Dynamic stability issues in force control of manipulators, in: Internat. Conf. on Robotics and Automation, 1987, pp. 890-896.

  2. Arimoto, S. and Myazaki, F.: Stability and robustness of pid feedback control for robot manipulators of sensory capability, in: Robotic Research: The 1st Internat. Symposium, MIT Press, Cambridge, MA, 1984, pp. 783-799.

    Google Scholar 

  3. Arimoto, S. and Myazaki, F.: Stability and robustness of pid feedback control for robot manipulators of sensory capability, in: Proc. of IFAC Symp. on Robot Control, Barcelona, Spain, 1985, pp. 221-226.

  4. Arimoto, S. and Naniwa, T.: Learning control for robot motion under geometric constraint, Robotica 12 (1994), 101-108.

    Google Scholar 

  5. Barbot, J. P. and Hauser J.: Invariant periodic manifolds of discrete maps, in: European Control Conf., 1997.

  6. Brach, R. M.: Mechanical Impact Dynamics: Rigid Body Collisions, Wiley, New York, 1991.

    Google Scholar 

  7. Canudas, L. R. C. and Goswami, A.: Periodic stabilisation of 1 d.o.f hopping robot on nonlinear compliant surface, in: IFAC SYROCO'97, Nantes, France, 1997.

  8. Channon, P., Hopkins, S. and Pham, D.: Derivation of optimal walking motions for a bipedal walking robot, Robotica 10 (1992), 165-172.

    Google Scholar 

  9. Coiffet, P.: in: 2nd ECPD Int. Conf. on Advanced Robotics, Intelligent Automation and Active Systems, 1996.

  10. Cook, P. A.: Nonlinear dynamical systems, in: International Series in Systems and Control Engineering, Prentice-Hall, Englewood Cliffs, NJ, 1990.

    Google Scholar 

  11. El Gamah, H.: Implémentation de commande r epartie pour un robot quadrup ede a locomotion pneumatique, PhD Thesis, Université de Paris VI, Laboratoire de Robotique de Paris, 1994.

  12. Eppinger, S. and Seering, W.: On dynamic models of robot force control, in: Internat. Conf. on Robotics and Automation, 1986, pp. 29-34.

  13. François, C. and Samson, C.: Running with constant energy, in: IEEE'1994, vol. 248, 1994, pp. 44-53.

    Google Scholar 

  14. Goswami, B. E. A. and Keramane, A.: Limit cycles in a passive compass gait biped and passivity-mimicking control laws, to appear in J. Autonomous Robots, 1997.

  15. Guihard, M.: Etude de lois de commande adaptatives d'actionneurs pneumatiques pour le controle dynamique d'un robot marcheur, PhD Thesis, Université de Paris VI, Laboratoire de Robotique de Paris, France, 1995.

    Google Scholar 

  16. Hauser, J. and Chung, C. C.: Converse Lyapunov functions for exponentially stable periodic orbits, Syst. Control Lett. 23 (1994), 27-34.

    Google Scholar 

  17. Kahgn, J. and Amirouche, F.: Impact force analysis in mechanical hand design, Internat. Conf. on Robotics and Automation, 1987.

  18. Khalil, H. K.: Nonlinear Systems, Macmillan, New York, 1992.

    Google Scholar 

  19. Khalil, H. K.: Nonlinear Systems, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1996.

    Google Scholar 

  20. Koditschek, D. and Buehler, M.: Analysis of a simplified hopping robot, Internat. J. Robotics Res. 10 (1991).

  21. Koditshek, D. E. and Buhler, M.: Analysis of a simplified hopping robot, Internat. J. Robotics Res. 10(6).

  22. Manamani, N.: Commandes et observateurs pour systèmes pneumatiques-méthodologie pour la locomotion à pattes, Thèse université de Paris VI, LRP, Paris, France, 1998.

    Google Scholar 

  23. Manamani, N., M'Sirdi, N., Nadjar-Gauthier, N., and Alvergnat, L.: Simplified modelization and control of a two link hopping robot, in: ECPD 2nd Internat. Conf. on Advanced Robotics, Intelligent Automation and Active Systems, Austria, 1996.

  24. Closkey, R. M. and Burdick, J.: Periodic motions of a hopping robot with vertical and forward motion, Internat. J. Robotics Res. 12 (1993).

  25. McMahon, G. T. A. and Frederick, E. C.: Groucho running, J. Appl. Physiology 62 (June 1987), 2326-2337.

    Google Scholar 

  26. Michalska, M. A. H. and Buehler, M.: Vertical motion control of a hopping robot, in: Proc. IEEE Internat. Conf. on Robotics and Automation, Minneapolis, MN, 1996.

  27. M'Sirdi, N., Manamani, N. and Nadjar-Gauthier, N.: Control approach for hopping robots: Controlled limit cycles, in: Proc. IEEE AVCS'98, Amiens, France, 1998, pp. 64-69.

  28. M'Sirdi, N., Manamani, N., and Nadjar-Gauthier, N.: Controlled limit cycles approach for control of legged robots, in: Proc. of IFAC Congress on Motion Control'98, Grenoble, France, 1998.

  29. M'Sirdi, N., Manamani, N., and Nadjar-Gauthier, N.: Methodology based on clc for control of fast legged robots, in: IROS'98, Canada, 1998, pp. 71-76.

  30. Perruquetti, W.: Sur la stabilité et l'estimation des comportements non linéaires non stationnaires perturbés, Thèse université des Sciences et Technologies de Lille, France, 1994.

  31. Raibert, M. H.: Legged Robots that Balance, MIT Press, Cambridge, MA, 1986.

    Google Scholar 

  32. Raibert, M., Tzafestas, S., and Tzafestas, C.: Comparatvie simulation study of three control techniques applied to a biped robot, in: IEEE Conf. on Systems Man and Cybernetics, Le Touquet, France, 1993, pp. 494-502.

  33. Rostami, M. and Bessonnet, G.: Impactless sagittal gait of a biped robot during the single support phase, in: IEEE ICRA, Lueven, Belgium, May 1998.

  34. Roussel, L., Canudas, C. and Goswami, A.: Generation of energy optimal complete gait cycles for biped robots, in: Internat. Conf. on Robotics and Automation, 1998.

  35. Sardain, P., Rostami, M., and Bessonnet, G.: An anthropomorphic biped robot: Dynamic concepts and technological design, IEEE Trans. Systems Man Cybernet. A28(6) (1998).

  36. Schwind, W. and Koditschek, D.: Control of forward velocity for a simplified planar hopping robot, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, 1995.

  37. Tzafestas, C., M'Sirdi, N., and Manamani, N.: Adaptive impedance control applied to a pneumatic legged robot, Internat. J. Robotic Systems 20 (1997), 105-129.

    Google Scholar 

  38. Vakakis, A. and Burdick, J.: Chaotic motions of a simplified hopping robot, in: Proc. of IEEE Internat. Conf. on Robotics and Automation, Cincinnati, OH, 1990.

  39. Youcef-Toumi, K. and Gutz, D.: Impact and force control, in: Internat. Conf. on Robotics and Automation, 1989, pp. 410-416.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

M'Sirdi, N., Manamanni, N. & El Ghanami, D. Control Approach for Legged Robots with Fast Gaits. Journal of Intelligent and Robotic Systems 27, 321–343 (2000). https://doi.org/10.1023/A:1008191616942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008191616942

Navigation