Abstract
Linear scale-space theory provides a useful framework to quantify the differential and integral geometry of spatio-temporal input images. In this paper that geometry comes about by constructing connections on the basis of the similarity jets of the linear scale-spaces and by deriving related systems of Cartan structure equations. A linear scale-space is generated by convolving an input image with Green's functions that are consistent with an appropriate Cauchy problem. The similarity jet consists of those geometric objects of the linear scale-space that are invariant under the similarity group. The constructed connection is assumed to be invariant under the group of Euclidean movements as well as under the similarity group. This connection subsequently determines a system of Cartan structure equations specifying a torsion two-form, a curvature two-form and Bianchi identities. The connection and the covariant derivatives of the curvature and torsion tensor then completely describe a particular local differential geometry of a similarity jet. The integral geometry obtained on the basis of the chosen connection is quantified by the affine translation vector and the affine rotation vectors, which are intimately related to the torsion two-form and the curvature two-form, respectively. Furthermore, conservation laws for these vectors form integral versions of the Bianchi identities. Close relations between these differential geometric identities and integral geometric conservation laws encountered in defect theory and gauge field theories are pointed out. Examples of differential and integral geometries of similarity jets of spatio-temporal input images are treated extensively.
Similar content being viewed by others
References
A. P. Balachandran, G. Bimonte, G. Landi, F. Lizzi, and P. Teotonio-Sobrinho, “Lattice gauge fields and noncommutative geometry,” Universidade de Sao Paulo, Instituto de Fisica-DFMA, Sao Paulo, SP, Brazil, 1996.
G. Bimonte, E. Ercolessi, F. Lizzi, G. Landi, G. Sparano, and P. Teotonio-Sobrinho, “Noncommutative lattices and their continuum limits,” Departamento de Fysica Teorica, Facultade de Ciencias, Universitad de Zaragoza, Zaragoza, Spain, 1995.
J. Blom, “Topological and geometrical aspects of image structure,” Ph. D. thesis, Utrecht University, 1992.
E. Cartan, Sur les Variétés à Connexion Affine et la Théorie de la Relativité Généralisée, Gauthiers-Villars, 1955.
R. Cipolla and A. Blake, “Surface orientation and time to contact from image divergence and deformation,” in Proc. ECCV'92, Santa Margherita Ligure, Italy, May 1992, pp. 187–202.
J. Damon, “Local Morse theory for solutions to the heat equation and Gaussian blurring,” Jour. Diff. Eqns., 1993.
D. H. Eberly, “Geometric methods for analysis of ridges in n-dimensional images,” Ph. D. thesis, Department of Computer Vision, The University of North Carolina, Chapel Hill, North Carolina, 1994.
A. V. Evako, R. Kopperman, and Y. V. Mukhin, “Dimensional properties of graphs and digital spaces,” Journal of Mathematical Imaging and Vision, Vol. 6, No.2/3, pp. 109–119, 1996.
O. Faugeras, “On the motion of 3D curves and its relationship to optical flow,” in Proc. ECCV'90, Antibes, France, April 1990, pp. 107–117.
L. M. J. Florack and M. Nielsen, “The intrinsic structure of the optic flow field,” Technical Report ERCIM-07/94-R033 or INRIARR-2350, ERCIM, July 1994.
L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, “Cartesian differential invariants in scalespace,” Journal of Mathematical Imaging and Vision, Vol. 3, pp. 327–348, 1993.
F. W. Hehl, J. Dermott McCrea, and E. W. Mielke, Weyl Spacetimes, The Dilation Current, and Creation of Gravitating Mass by Symmetry Breaking, Verlag Peter Lang: Frankfurt, 1988, pp. 241–311.
G. T. Herman and Z. Enping, “Jordan surfaces in simply connected digital spaces,” Journal of Mathematical Imaging and Vision, Vol. 6, No.2/3, pp. 121–138, 1996.
B. K. P. Horn, Robot Vision, MIT Press: Cambridge MA, 1986.
P. Johansen, S. Skelboe, K. Grue, and J. D. Andersen, “Representing signals by their top points in scale-space,” in Proceedings of the 8th International Conference on Pattern Recognition, 1986, pp. 215–217.
P. Johansen, “On the classification of top-points in scale-space,” Journal of Mathematical Imaging and Vision, Vol. 4, pp. 57–68, 1994.
A. Kadi and D. G. B. Edelen, A gauge theory of dislocations and disclinations, Lecture Notes in Physics, Vol. 174, Springer-Verlag: Berlin, 1983.
S. N. Kalitzin, B. M. ter Haar Romeny, A. H. Salden, P. F. M. Nacken, and M. A. Viergever, “Topological numbers and singularities in scalar images; scale-space evolution properties,” Journal of Mathematical Imaging and Vision, accepted.
H. Kleinert, Gauge Fields in Condensed Matter, World Scientific Publishing Co.: Singapore, Vol. 1–2, 1989.
J. J. Koenderink, “The structure of images,” Biol. Cybern., Vol. 50, pp. 363–370, 1984.
J. J. Koenderink, “Scale-time,” Biol. Cybern., Vol. 58, pp. 159–162, 1988.
J. J. Koenderink and W. Richards, “Two-dimensional curvature operators,” Journal of the Optical Society of America-A, Vol. 5, pp. 1136–1141, 1988.
J. J. Koenderink and A. J. van Doorn, “Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer,” Optica Acta, Vol. 22, pp. 773–791, 1975.
J. J. Koenderink and A. J. van Doorn, “A description of the structure of visual images in terms of an ordered hierarchy of light and dark blobs,” in Second Int. Visual Psychophysics and Medical Imaging Conf., IEEE Cat. No. 81 CH 1676-6, 1981.
J. J. Koenderink and A. J. van Doorn, “Local features of smooth shapes: Ridges and courses,” in Proc. SPIE Geometric Methods in Computer Vision II, 1993, Vol. 2031, pp. 2–13.
J. J. Koenderink, “A hitherto unnoticed singularity of scalespace,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 11, pp. 1222–1224, 1989.
T. Lindeberg, “Scale-space for discrete signals,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 12, pp. 234–245, 1990.
T. Lindeberg, “Scale-space behaviour of local extrema and blobs,” Journal of Mathematical Imaging and Vision, Vol. 1, pp. 65–99, 1992.
T. Lindeberg, Scale-Space Theory in Computer Vision, The Kluwer International Series in Engineering and Computer Science., Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994.
McAndrew and C. A. Osborne, “A survey of algebraic methods in digital topology,” Journal of Mathematical Imaging and Vision, Vol. 6, No.2/3, pp. 139–159, 1996.
M. Newman, “A fundamental group for gray-scale digital images,” Journal of Mathematical Imaging and Vision, Vol. 6, No.2/3, pp. 139–159, 1996.
T. Okubo, Differential Geometry, Marcel Dekker Inc.: New York, 1987.
J. F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach: Paris, 1978.
J. H. Rieger, “Generic evolutions of edges on families of diffused gray-value surfaces,” Journal of Mathematical Imaging and Vision, Vol. 5, No.3, pp. 207–217, 1995.
A. H. Salden, “Dynamic scale-space paradigms,” Ph. D. thesis, Utrecht University, The Netherlands, 1996.
A. H. Salden, “Invariant theory,” in Gaussian Scale-Space Theory, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996.
A. H. Salden, L. M. J. Florack, and B. M. ter Haar Romeny, “Differential geometric description of 3D scalar images,” 3D Computer Vision, Utrecht, The Netherlands, Technical Report 91-23, 1991.
A. H. Salden, L. M. J. Florack, B. M. ter Haar Romeny, J. J. Koenderink, and M. A. Viergever, “Multi-scale analysis and description of image structure,” in Nieuw Archief voor Wiskunde, 1992, Vol. 10, pp. 309–326.
A. H. Salden, B. M. ter Haar Romeny, L. M. J. Florack, J. J. Koenderink, and M. A. Viergever, “A complete and irreducible set of local orthogonally invariant features of 2-dimensional images,” in Proceedings 11th IAPR Internat. Conf. on Pattern Recognition, The Hague, The Netherlands, 1992, pp. 180–184.
A. H. Salden, B. M. ter Haar Romeny, and M. A. Viergever, “Local and multilocal scale-space description,” in Proc. of the NATO Advanced Research Workshop Shape in Picture—Mathematical Description of Shape in Gray-Level Images, Vol. 126 of NATO ASI Series F, Berlin, 1994, pp. 661–670.
A. H. Salden, B. M. ter Haar Romeny, and M. A. Viergever, “Modern Geometry and Dynamic scale-space theory,” in Proc. Conf. on Differential Geometry and Computer Vision: From Pure over Applicable to Applied Differential Geometry, Nordfjordeid, Norway, August 1–7, 1995.
A. H. Salden, B. M. ter Haar Romeny, and M. A. Viergever, “Algebraic invariants of linear scale-spaces,” submitted to Journal of Mathematical Imaging and Vision, March 1996.
A. H. Salden, B. M. ter Haar Romeny, and M. A. Viergever, “Linear scale-space theory from physical principles,” Journal of Mathematical Imaging and Vision, accepted.
L. A. Santalo, “Integral geometry in general spaces,” in Proceedings International Congress of Mathematics, Cambridge, Vol. 1, 1950, pp. 483–489.
L. A. Santalo, “Integral Geometry and Geometric Probability,” Addison-Wesley Publishing Company: London, 1976, Vol. 1.
M. Spivak, Differential Geometry, Publish or Perish, Inc.: Berkeley, California, USA, Vol. 1–5, 1975.
B. M. ter Haar Romeny, Geometry-Driven Diffusion in Computer Vision, Kluwer Academic Publishers: Dordrecht, 1994.
A. L. Yuille and T. A. Poggio, “Scaling theorems for zero-crossings,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 8, pp. 15–25, 1986.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Salden, A.H., Ter Haar Romeny, B.M. & Viergever, M.A. Differential and Integral Geometry of Linear Scale-Spaces. Journal of Mathematical Imaging and Vision 9, 5–27 (1998). https://doi.org/10.1023/A:1008253609285
Issue Date:
DOI: https://doi.org/10.1023/A:1008253609285