Skip to main content
Log in

A Number Theoretic Conjecture and the Existence of S–Cyclic Steiner Quadruple Systems

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In their survey article on cyclic Steiner Quadruple Systems SQS(v) M. J. Grannel and T. S. Griggs advanced the conjecture (cf. [8, p. 412]) that their necessary condition for the existence of S-cyclic SQS(v) (cf. [7, p. 51]) is also sufficient. Some years prior to that E. Köhler [10] used a graph theoretical method to construct S-cyclic SQS(v). This method was extended in [17]-[20] and eventually used to reduce the conjecture of Grannel and Griggs to a number theoretic claim (cf. also [21], research problem 146). The main purpose of the present paper is to attack this claim. For the long intervals we have to distinguish four cases. The proof of cases I–III can be accomplished by a thorough study of how the multiples of a certain set belonging to the first column of a certain matrix (the elements of which are essentially the vertices of a graph corresponding to SQS(2p)) are distributed over the columns. The proof is by contradiction. Case IV is most difficult to treat and could only be dealt with by very deep lying means. We have to use an asymptotic formula on the number of lattice points (x,y) with xy ≡ 1 mod p (we speak of 1-points) in a rectangle and this formula shows that the 1-points are equidistributed. But even so our claim could not be proved for all intervals of admissible length. Intervals [a,b] with \(\frac{p} {m} \) for some m and \({15} \) could not be covered. In the last section we discuss some conclusions which would follow from the non-existence of complete intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York-Heidelberg-Berlin (1976).

    Google Scholar 

  2. J. A. Barrau, Over de combinatorische opgave van Steiner, Akad. Wet. Amst. Versl. Wis-en Naturkd. Afd., Vol. 17 (1908) pp. 318-326.

    Google Scholar 

  3. Th. Beth, G. Jungnickel, and H. Lenz, Design Theory, Mannheim/Wien/Zürich (1985).

  4. S. Bitan and T. Etzion, The last packing number of quadruples cyclic SQS and optical orthogonal codes, Designs, Codes and Cryptography, Vol. 3 No.4.

  5. I. Diener, S-zyklische Steinersysteme, Diplomarbeit, Inst.f numerische und angewandte Math., Univ. Göttingen (1979).

  6. F. Fitting, Zyklische Lösung des Steiner’schen Problems. Nieuw. Arch. Wisk., Vol. 11 No.2 (1915) pp. 140-148.

    Google Scholar 

  7. M. J. Grannel and T. S. Griggs, On the structure of S-cyclic Steiner quadruple systems, Ars combinatoria, Vol. 9 (1980) pp. 51-58.

    Google Scholar 

  8. M. J. Grannel and T. S. Griggs, Some recent results on cyclic Steiner quadruple systems, Ann. Discrete Math., Vol. 18 (1983) pp. 409-417.

    Google Scholar 

  9. A. Hartman and K. T. Phelps, Steiner quadruple systems. In Contemporary Design Theory: A Collection of Surveys(J. Dinitz and D. Stinsonm, eds.), John Wiley and Sons (1992) pp. 205-240.

  10. E. Köhler, Zyklische Quadrupelsysteme, Abh. Math. Sem. Univ. Hamburg, Vol. XLVIII (1978) pp. 1-24.

    Google Scholar 

  11. H. Lenz and G. Ringel, A brief review on Egmont Köhler’s mathematical work, Discrete Math., Vol. 97 (1991).

  12. R. Lidl and H. Niederreiter, Finite fields. In Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Company, Reading, Massachusetts (1983).

    Google Scholar 

  13. C. C. Lindner and A. Rosa, Steiner quadruple systems-a survey, Discrete Math., Vol. 21 (1978) pp. 147-181.

    Google Scholar 

  14. K. T. Phelps, On cyclic Steiner systems S(3,4,20), Ann. Discrete Math., Vol. 7 (1980) pp. 277-300.

    Google Scholar 

  15. R. Peltesohn, Eine Lösung der beiden Heffter’schen Differenzenprobleme, Compos. Math., Vol. 6 (1938) pp. 251-257 (VII.4).

    Google Scholar 

  16. W. Piotrowski, Untersuchungen über S-zyklische Steiner Quadrupelsysteme, Diss. Univ. Hamburg, 1985, pp. 1-104.

  17. H. Siemon, Some remarks on the construction of cyclic Steiner quadruple systems, Arch. d. Math., Vol. 49 (1987) pp. 166-178.

    Google Scholar 

  18. H. Siemon, Infinite families of strictly cyclic Steiner quadruple systems, Discrete Math., Vol. 77 (1989) pp. 307-316.

    Google Scholar 

  19. H. Siemon, On the existence of cyclic Steiner quadruple systems SQS(2p), Discrete Math., Vol. 97 (1991) pp. 377-385.

    Google Scholar 

  20. H. Siemon, Cyclic Steiner quadruple systems and Köhlers orbit graphs, Designs, Codes and Cryptography, Vol. 1 (1991) pp. 121-132.

    Google Scholar 

  21. H. Siemon, Research problem 146, Discrete Math., Vol. 97 (1991) p. 20.

    Google Scholar 

  22. A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., Vol. 34 (1943) pp. 204-207.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siemon, H. A Number Theoretic Conjecture and the Existence of S–Cyclic Steiner Quadruple Systems. Designs, Codes and Cryptography 13, 63–94 (1998). https://doi.org/10.1023/A:1008298006643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008298006643

Navigation