Skip to main content
Log in

Using Interval Analysis for Solving Planar Single-Facility Location Problems: New Discarding Tests

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Interval analysis is a powerful tool which allows the design of branch-and-bound methods able to solve many global optimization problems. The key to the speed of those methods is the use of several tests to discard boxes or parts of boxes in which no optimal point may occur. In this paper we present three new discarding tests for two-dimensional problems which are specially suitable for planar single-facility location problems. The usefulness of the new tests is shown by a computational study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berner, S. (1996), New Results on Verified Global Optimization, Computing 57: 323-343.

    Google Scholar 

  2. Casado, L.G., García, I. and Csendes, T., A New Multisection Technique in Interval Methods for Global Optimization, Computing (to appear).

  3. Csallner, A.E. (1993), Global optimization in separation network synthesis, Hungarian Journal of Industrial Chemistry 21: 303-308.

    Google Scholar 

  4. Csendes, T. (1998), Optimization methods for process network synthesis-a case study. In Christer Carlsson and Inger Eriksson (eds.), Global multiple criteria optimization and information systems quality, Abo Academy, Turku, pp. 113-132.

    Google Scholar 

  5. Csendes, T. and Ratz, D. (1996), A review of subdivision direction selection in interval methods for global optimization, ZAMM 76: 319-322.

    Google Scholar 

  6. Csendes, T. and Ratz, D. (1997), Subdivision direction selection in interval methods for global optimization, SIAM Journal on Numerical Analysis 34: 922-938.

    Google Scholar 

  7. Drezner, Z. (1995), Facility Location: a Survey of Applications and Methods, Springer, Berlin.

    Google Scholar 

  8. Fernández, J. (1999), Nuevas técnicas para el diseño y resolución de problemas de localización continua (New techniques for design and solution of continuous location models), Ph.D. Thesis, Dpto. Estadística e Investigación Operativa, Universidad de Murcia, Murcia, Spain (in Spanish).

    Google Scholar 

  9. Fernández, J., Cánovas, L. and Pelegrín, B. (1997), DECOPOL-codes for decomposing a polygon into covex subpolygons, European Journal of Operational Research 102: 242-243.

    Google Scholar 

  10. Fernández, J., Cánovas, L. and Pelegrín, B. (2000), Algorithms for the decomposition of a polygon into convex polygons, European Journal of Operational Research 121: 330-342.

    Google Scholar 

  11. Fernández, J., Cánovas, L. and Pelegrín, B. (2000), Decomposition of a polygon with holes into convex polygons, Working paper 2000/2, Department of Statistics and Operations Research, University of Murcia, Murcia, Spain.

    Google Scholar 

  12. Fernández, J., Fernández, P. and Pelegrín, B. (1997), Estimating Actual Distances by Norm Functions: a Comparison between the l k;p ?-norm and the l b1;b2 ?-norm and a Study about the Selection of the Data Set, Computers and Operations Research (to appear).

  13. Fernández, J., Fernández, P. and Pelegrín, B. (2000), A continuous location model for siting a non-noxious undesirable facility within a geographical region, European Journal of Operational Research 121: 259-274.

    Google Scholar 

  14. Fernández, J. and Pelegrín, B. (2000), Sensitivity Analysis in Continuous Location Models via Interval Analysis, Studies in Locational Analysis 14: 121-136

    Google Scholar 

  15. Goos, A. and Ratz, D. (1997), Praktische Realisierung und Test eines Verifikationsverfahrens zur Loesung globaler Optimierungsprobleme mit Ungleichungsnebenbedingungen, Forschungsschwerpunkt Computerarithmetik, Intervallrechnung und Numerische Algorithmen mit Ergebnisverifikation, technical report (available at http://www.unikarlsruhe. de/iam/html/reports.html).

  16. Hansen, E. (1992), Global Optimization Using Interval Analysis, Marcel Dekker, New York.

    Google Scholar 

  17. Hansen, P., Peeters, D., Richard, D. and Thisse, J.F. (1985), The minisum and minimax location problems revisited, Operations Research 33: 1251-1265.

    Google Scholar 

  18. Hua, J.Z., Brennecke, J.F. and Stadtherr, M.A. (1998), Enhanced interval analysis for phase stability: cubic equation of state models, Industrial Engineering Chemical Research 37: 1519-1527.

    Google Scholar 

  19. Kearfott, R.B. (1996), Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht.

    Google Scholar 

  20. Kearfott, R.B. (1996), Test results for an interval branch and bound algorithm for equalityconstrained optimization, in: State of the art in global optimization, Kluwer, Dordrecht, 181-199.

    Google Scholar 

  21. Kearfott, R.B. (1996), On Verifying Feasibility in Equality Constrained Optimization Problems, technical report (available at http://interval.louisiana.edu/preprints.html).

  22. Kearfott, R.B. (1998), On Proving Existence of Feasible Points in Equality Constrained Optimization Problems, Mathematical Programming 83: 89-100.

    Google Scholar 

  23. Klatte, R., Kulisch, U., Neaga, M., Ratz, D. and Ullrich, C. (1992), PASCAL-XSC-Language Reference with Examples, Springer, Heidelberg.

    Google Scholar 

  24. Love, R.F., Morris, J.G. and Wesolowsky, G.O. (1988), Facilities Location: Models and Methods, North Holland, New York.

    Google Scholar 

  25. Plastria, F. (1992), GBSSS: The Generalized Big Square Small Square Method for Planar Single-Facility Location,European Journal of Operational Research 62: 163-174.

    Google Scholar 

  26. Rall, L.B. (1981), Automatic Differentiation, Techniques and Applications, Lecture Notes in Computer Science, No. 120, Springer, Berlin.

    Google Scholar 

  27. Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, Ellis Horwood, Chichester.

    Google Scholar 

  28. Ratschek, H. and Rokne, J. (1993), Experiments using interval analysis for solving a circuit design problem, Journal of Global Optimization 3: 501-518.

    Google Scholar 

  29. Ratschek, H. and Voller, R.L. (1991), What can Interval Analysis do for Global Optimization?, Journal of Global Optimization 1: 111-130.

    Google Scholar 

  30. Ratz, D. (1994), Box-splitting strategies for the interval Gauss-Seidel step in a global optimization method, Computing 53: 337-353.

    Google Scholar 

  31. Ratz, D. (1996), On Branching Rules in Second-Order Branch-and-Bound Methods for Global Optimization, in: Alefeld, Frommer and Lang (eds.), Scientific Computing and Validated Numerics, Akademie-Verlag, pp. 221-227.

  32. Ratz D. and Csendes T. (1995), On the Selection of Subdivision Directions in Interval Branchand-Bound Methods for Global Optimization, Journal of Global Optimization 7: 183-207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, J., PelegrÍn, B. Using Interval Analysis for Solving Planar Single-Facility Location Problems: New Discarding Tests. Journal of Global Optimization 19, 61–81 (2001). https://doi.org/10.1023/A:1008315927737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008315927737

Navigation