Skip to main content
Log in

HOPs and COPs: Room frames with partitionable transversals

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we construct Room frames with partitionable transversals. Direct and recursive constructions are used to find sets of disjoint complete ordered partitionable (COP) transversals and sets of disjoint holey ordered partitionable (HOP) transversals for Room frames. Our main results include upper and lower bounds on the number of disjoint COP transversals and the number of disjoint HOP transversals for Room frames of type 2n. This work is motivated by the large number of applications of these designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. R. Abel, A. E. Brouwer, C. J. Colbourn, and J. H. Dinitz, Mutually orthogonal Latin squares (MOLS), CRC Handbook of Combinatorial Design (C. J. Colbourn and J. H. Dinitz, eds.), CRC Press, Boca Raton, FL (1996) pp. 111–142.

    Google Scholar 

  2. R. J. R. Abel, C. J. Colbourn, and J. H. Dinitz, Incomplete MOLS, CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds.), CRC Press, Boca Raton, FL (1996) pp. 142–172.

    Google Scholar 

  3. J. H. Dinitz and D. K Garnick, Holey factorizations, Ars Combin., 44 (1996) pp. 65–92.

    Google Scholar 

  4. J. H. Dinitz and E. R. Lamken, Howell designs with sub-designs, J. Combin. Theory (A), Vol. 65 (1994) pp. 268–301.

    Google Scholar 

  5. J. H. Dinitz and E. R. Lamken, Uniform Room frames with five holes, J. of Combinatorial Design, Vol. 1 (1993) pp. 323–328.

    Google Scholar 

  6. J. H. Dinitz and D. R. Stinson, A few more Room frames, Graphs, Matrices and Designs, Marcel Dekker, New York (1993) pp. 133–146.

    Google Scholar 

  7. J. H. Dinitz and D. R. Stinson, The construction and uses of frames, Ars Combin., Vol. 10 (1980) pp. 31–54.

    Google Scholar 

  8. J. H. Dinitz and D. R. Stinson, A hill-climbing algorithm for the construction of one-factorizations and Room squares, SIAM J. Algebraic Discrete Methods, Vol. 8 (1987) pp. 430–438.

    Google Scholar 

  9. J. H. Dinitz, D. R. Stinson, and Zhu Lie, On the spectra of certain classes of Room frames, Electronic J. of Combinatorics, Vol. 1 (1994) #R7.

    Google Scholar 

  10. G. Ge and L. Zhu, On the existence of Room frames of types t u, J. of Combinatorial Designs, Vol. 1 (1993) pp. 183–191.

    Google Scholar 

  11. E. R. Lamken, The existence of 3 orthogonal partitioned incomplete Latin squares of type t n, Discrete Math., Vol. 89 (1991) pp. 231–251.

    Google Scholar 

  12. E. R. Lamken, The existence of partitioned generalized balanced tournament designs with block size 3, Designs, Codes and Cryptography, 11 (1997), pp. 37–71.

    Google Scholar 

  13. E. R. Lamken and S. A. Vanstone, The existence of skew Howell designs of side 2n and order 2n + 2, J. Combin. Theory (A), Vol. 54 (1990) pp. 20–40.

    Google Scholar 

  14. E. R. Lamken and S. A. Vanstone, Skew transversals in frames, J. Combin. Math. and Combin. Computing, Vol. 2 (1987) pp. 37–50.

    Google Scholar 

  15. C. C. Lindner, C. A. Rodger, and D. R. Stinson, Nesting of cycle systems of odd length, Discrete Math., Vol. 77 (1989) pp. 191–203.

    Google Scholar 

  16. R. C. Mullin, P. J. Schellenberg, S. A. Vanstone, and W. D. Wallis, On the existence of frames, Discrete Math., Vol. 37 (1981) pp. 79–104.

    Google Scholar 

  17. D. R. Stinson, On the existence of skew Room frames of type 2n, Ars Combin., Vol. 24 (1987) pp. 115–128.

    Google Scholar 

  18. D. R. Stinson, Some Classes of Frames, and the Spectra of Skew Room Frames and Howell Designs, Ph.D. Dissertation, University of Waterloo (1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinitz, J.H., Lamken, E.R. HOPs and COPs: Room frames with partitionable transversals. Designs, Codes and Cryptography 19, 5–26 (2000). https://doi.org/10.1023/A:1008334412968

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008334412968

Navigation